
White Paper
April 2025

Executive Summary
As Intel’s business expands, the demand for data center network capacity has
surged by over 25% annually. Furthermore, business pressures necessitate that
new capacity be operational within 24 hours. As early as 2014, we acknowledged the
potential of software-defined networking (SDN) to help address these challenges.

After evaluating the components and architectures of SDN, we opted for an
open, standards-based architecture rather than a supplier-centric solution.
As our SDN architecture has evolved, we have established a standardized
and scalable data center network architecture that extensively uses automation.
The open interface provides the flexibility to integrate additional business-driven
automation, enabling us to meet our growth objective and timeline requirements.

Our network architecture strategy relies on five pillars:

•	 Scalability through standardization. We maintain compliancy with our
standards for hardware, OS, device roles, topology, configurations, and
solutions to enable automation and rapid scalability at large data centers.1

•	 Programmability. This allows our workforce to adapt to significant growth in
network scale with improved speed. It also facilitates full lifecycle provisioning
of network infrastructure from Day 0 to end of life.

•	 Security. We have the capability to segment the network using a common
infrastructure to support various use cases and enhance data center security.

•	 Resiliency. Built-in network resiliency helps ensure the continuous operation
of network functionality, facilitates rapid recovery, and maintains performance
even in compromised conditions.

•	 Supportability. We strive to be sure the network maintains its designed level of
performance and availability of the network. Adhering to standards facilitates
troubleshooting.

Over the past five years, we have migrated the majority of our data centers to a
new SDN architecture that employs a leaf-spine underlay combined with overlay
networks. By utilizing Industry-standard components and protocols, we have
significantly improved network delivery times while reducing the need for human
resources, thereby enhancing overall efficiency. Additionally, we have increased
the stability and reliability of the network and consolidated multiple dedicated
customer networks onto a common infrastructure that’s integrated with
enhanced security controls.

1	 Early in our SDN adoption, we relied on naming conventions to define attributes of a device. In our new system,
we no longer rely on naming conventions, but rather store those attributes in our Network Source of Truth (NSoT).

Intel IT has chosen an open, standardized approach to software-defined networking

IT@Intel: Scaling Intel’s Data Centers with
Software-Defined Networking and Automation

Intel IT Authors
Sanjay Rungta
Senior Principal Engineer,
Network Architecture

Greg Botts
Infrastructure and DevOps Engineer

Matthew Gray
Network Automation Engineer

Seth Gehring
Network Automation Engineer

Mohammad Ali
Infrastructure and DevOps Engineer

Table of Contents
Background. 2
Selecting an SDN Approach
and Architecture Components. 2
Improving Scalability by Adopting
a Leaf-Spine Network Architecture. . . . 2
Strategy for a Scalable,
Robust SDN Architecture. 3
Solution Architecture. 5
Migration Strategy. 10
Results. 11
Next Steps. 12
Conclusion. 12
Related Content. 12

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 2

Acronyms
ACL	 access control list
ASN	 autonomous system number
BGP	 Border Gateway Protocol
CMDB	 Configuration Management Database
DHCP	 Dynamic Host Configuration Protocol
DNS	 Domain Name System
DOME	 Design, Office, Manufacturing 		

	 and Enterprise
eBGP	 External Border Gateway Protocol
EVPN 	 Ethernet Virtual Private Network
HPC	 high-performance computing
LACP	 Link Aggregation Control Protocol
MLAG	 Multi-Chassis Link Aggregation Grouping
NSoT	 Network Source of Truth
POD	 point of delivery
SDN	 software-defined networking
SMF	 single-mode fiber
STP	 Spanning Tree Protocol
TOR	 top-of-rack
VTEP	 Virtual Tunnel End Point
VRF	 virtual routing and forwarding
VNI	 VxLAN Network ID
VxLAN	 Virtual Extensible Local Area Network
WSGI	 Web Server Gateway Interface
ZTP	 zero-touch provisioning

Background
Intel’s data centers2 are the heart of a thriving, complex
business. Intel IT operates 55 data center modules at 15
data center sites. These sites have a total capacity of 126 MW,
housing more than 418,000 servers that underpin the
computing needs of approximately 100,000 employees.
To support the business needs of Intel’s critical business
functions—Design, Office, Manufacturing, and Enterprise
(DOME)—while operating our data centers as efficiently
as possible, Intel IT has engaged in data center network
modernization for many years. Intel’s business is becoming
increasingly data-driven, relying on machine learning, AI,
big data analytics, and automation. As data explodes, we
are experiencing greater than 25% growth in demand for
network capacity every year. In parallel, we desire to put the
new capacity into production within 24 hours once received
to optimize the value of the investment.

In 2014, we began evaluating software-defined networking
(SDN) solutions as a way to meet these data center
challenges. Until that time, traditional networking approaches
using fixed-purpose hardware met the needs of client/server
computing. But, with the proliferation of cloud-based services
and server virtualization, along with continued business
growth, we needed a way to keep up with a more dynamic
computing environment, and SDN offered a lot of potential.

2	 IT@Intel, “Data Center Strategy Leading Intel’s Business Transformation,” https://
www.intel.com/content/www/us/en/it-management/intel-it-best-practices/data-
center-strategy-paper.html.

Our SDN solution provides us with an interface that enables
programmatic manageability. It also offers an integrated
and automated control plane, which allows us to scale while
maintaining a standardized environment. We now use our
data center SDN architecture in three of the four DOME
environments; however, the Manufacturing environment
uses a different approach due to its unique business drivers.

Selecting an SDN Approach
and Architecture Components
In 2018, as we started exploring how to adopt 100 Gbps
technology, we scanned the industry and SDN solutions.
As the SDN market evolved, we noted that solutions tended
to fall into two categories:

•	 Closed-loop SDN using supplier-centric technologies.

•	 Open, standards-based SDN that supports next-
generation data center architectures featuring
underlay and overlay designs.

While each approach has its advantages, we determined that
developing standardized, scalable building blocks for our
data center network architecture would better support the
automation necessary for on-demand provisioning, self-
healing, and scalability. The open architecture enables us to
integrate additional, business-driven automation capabilities
to meet our specific requirements. Plus, it helps avoid vendor
lock-in and takes advantage of a growing, evolving ecosystem.

Once we settled on an overall SDN approach and a switch
vendor, we started large-scale migration in 2019, and we
have migrated over 90% of Intel’s data centers to SDN
technology over the last five years. During this time, we
introduced new technologies and uplifted our orchestration
platform for scale with container-based infrastructure
and an open-source Network Source of Truth (NSoT)
and network automation platform.

Improving Scalability by Adopting
a Leaf-Spine Network Architecture
Traditionally, Intel’s data center network architecture was
implemented with a three-tier hierarchical model. This
industry-standard method of connectivity consisted of
Core, Distribution, and Access layer switches. Using L3
protocols for routing between the Core and Distribution
layer switches and L2 protocols between the Distribution
layer and the Access layer switches enabled simple,
intuitive deployment of services that helped increase the
supportability of our critical data centers. However, this
architecture could not scale well enough to support Intel’s
growth needs within its massive Design centers that use
high-performance computing (HPC); nor could it support
the growing complexity within the Enterprise data center
environments. In addition, our Design and Enterprise data
center network traffic experienced a significant shift from
primarily north-south traffic to mostly east-west traffic. This
shift caused congestion on the Core and Distribution layers.
To better support the new traffic patterns and Intel’s growth,
we are continuing to modernize our network architecture.

https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/data-center-strategy-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/data-center-strategy-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/data-center-strategy-paper.html

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 3

We are replacing the three-tier hierarchical model with a
leaf-spine architecture. (See “Migration Strategy” later for
our approach to transparently transitioning the network from
one model to the other.)

In a leaf-spine architecture, the leaf switch is connected to
multiple spine switches. This approach indirectly provides
higher bandwidth and improved redundancy. By adopting
a scalable unit of leaf and spine (also called a point of delivery,
or POD), it is easy to scale the data center network using fixed-
configuration switches on an as-needed basis (Figure 1).

Compute Pod

Leaf Leaf Leaf Leaf

Storage Pod

Leaf Leaf Leaf Leaf

Leaf-Spine Network Architecture

WAN WAN

 Border Leaf Border Leaf

Spine Spine Spine Spine

Super Spine Super SpineSuper Spine Super Spine

Figure 1. A leaf-spine network architecture better supports
Intel’s data centers, compared to a traditional three-tiered
hierarchical network architecture.

Network Fabric Design Details
To make the adoption and scaling of a leaf‑spine architecture
most efficient, we require every aspect of the architecture to
have repeatable building blocks (such as PODs), deterministic
communication flow, and solution flexibility to meet a growing
number of use cases required by Intel’s business units. This
building-blocks approach enables large-scale deployment at
an increased deployment velocity. Our network architecture is
also built with strict standards and guidelines that encompass
the full stack of our network.

To the fullest extent possible, we automate a switch’s lifecycle
from onboarding to end of life. This lifecycle automation
enables transparent deployment and maintenance:

•	 Day 0 zero-touch provisioning (ZTP) and onboarding.

•	 Day 1 configuration for fabric deployment.

•	 Day 2 configuration for a specific use case.

•	 End of life removal or decommissioning of the switch
from the network.

For the underlay network, the leaf-spine design and Border
Gateway Protocol (BGP) routing are critical aspects. To
provide L2 mobility across the fabric and highly secure,
transparent enclaves, overlay networks are built using Virtual
Extensible Local Area Network (VxLAN) and BGP’s Ethernet
Virtual Private Network (EVPN) capabilities. To optimize
the network for non-blocking network communications, we
have eliminated the Spanning Tree Protocol (STP) from the
network. Also, all network switches are non-blocking-capable

devices; this means that the switch can carry ingress/egress
network traffic at wire speed (the maximum bandwidth of
the interface).

Strategy for a Scalable, Robust
SDN Architecture
Historically, our network strategy has been optimized
predominantly for cost, although we also considered
network performance. To better support Intel’s growing
business, we have redefined our network strategy to pursue
technological advances to modernize and transform the
network to help ensure not only cost-effectiveness but also
best-in-class service quality. The following sections provide
some details about the five pillars that underpin our data
center network strategy.

Scalability through Standardization

When we set our initial goals for SDN, we realized the
solution we developed needed to be automatable and
scalable both locally and globally. This necessitated
a well-defined set of conventions that covered both
local configuration parameters and those that would
potentially have global relevance. This was an early, critical
acknowledgment. To that end, everything was designed
with standardization in mind. We also constructed the
documentation so it could be interpreted by developers.
We embedded all configuration specifications in our
architecture guide to encourage and enable automation.
The documentation includes variables, input parameters,
and configuration outputs.

Some of the critical conventions that we defined include
the following:

•	 Device naming. We originally implemented device
naming so that the name indicates a device’s location
information and function. From the naming, we could
derive configurations that are location-specific (such
as local Domain Name System [DNS] and directory
services) and function-specific (such as spine versus leaf
configurations). The adoption of this naming convention
enabled us to later programmatically migrate our fleet
into our new NSoT, where we no longer need to rely on
encoding the attributes of a device into the hostname,
but rather store those attributes in our structured NSoT.

•	 VLAN definitions and parameters. We identified VLAN
use cases and configuration parameters. Each VLAN is
assigned to a security zone and carries certain attributes
within the zone. Much of the automation configuration is
based on this information. Over time, we have found the
VLAN definition to be the most dynamic network aspect,
as we continually add new use cases. Our VLAN construct
has been invaluable in maintaining structure within the
fabric as we manage new deployments.

•	 BGP autonomous system number (ASN) allocation.
We allocated ranges based on location and within each
data center function (Design or Office/Enterprise).
Similar to other conventions, this allows for predictable,
automatable deployments.

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 4

•	 Connectivity assignments. We pre-allocated which ports
would be assigned based on device and functionality.
Depending on placement within the fabric, device types
were assigned along with the connectivity conventions
to neighboring elements.

•	 Device types and OS. We used a limited set of certified
devices in the solution to simplify spare parts inventory
and device support. New devices are only added as critically
needed. Sometimes, this forces us to use devices that
aren’t a perfect fit, but the need for consistency outweighs
the use of one-off device types. We minimized the device
type list to help reduce the OS count and specifications that
we must test against. When we certify a new OS, we push
the upgrade across the install base, which helps ensure
that all features are available and perform as expected.
Our approach to device types and OS use allows us to design
without having to account for deployment inconsistencies.

•	 Base-build configurations and security specifications.
We identified and propagated common configurations
that incorporate security across all devices to help ensure
stability and a common configuration to build upon.

•	 Security zones. Each identified security zone receives
the appropriate and relevant conventions.

•	 VxLAN Network ID (VNI) allocations. We globalized VNI
mappings with ranges pre-assigned to each data center,
so when we implemented Data Center Interconnect (DCI),
there were no VxLAN VNI conflicts. We could use legacy
VLAN information within each data center without worrying
about VLAN conflicts in other locations.

Together, these conventions enable a highly automatable
and scalable deployment as well as a significant reduction in
mean time to deploy (MTD) and mean time to repair (MTR).

Programmability
Our previous network solution had limited automation
capabilities. Onboarding network devices required physical
touch; could be accessed only by older methods like SSH and
command-line interfaces (CLIs); and had to be configured
and managed individually, mostly with human intervention.

With our new SDN solution, the devices register themselves
with our NSoT and configure themselves with a base build,
all from a small, distributed set of scripts. This enables us
to enforce standardization and change control and have
a single source of truth for our network environment.

Once we could efficiently manage our fleet of devices, we
programmatically generated all the relevant configurations
for them. Having the Standardization components already
defined algorithmically provided us with configuration
templates and the variables that would be used per site
and per device. It also provided us with the algorithms
for computing the values of those variables. We created
Python code to compute the values and pass them into
Jinja2 templates, rendering a device configuration that is
complete with its specific values. See the Orchestration and
Automation Framework section later for additional details.

The combination of standardization and programmability
gives us consistency across the network environment,
drastically reducing human error and downtime while
allowing us to quickly deploy new network capabilities.

Security
A critical aspect of the new design was to enable multi-
tenant support with appropriate security at all layers over the
common underlay data center IP fabric. We enabled multiple
security capabilities—such as large-scale access control list
(ACL), virtual routing and forwarding (VRF), traffic redirect,
etc.—in the toolbox so that the right tool can be used at the
underlay or overlay layer to control the traffic flow. Integration
with external security capabilities like a firewall was also
essential. It was also critical for the security solution to scale
beyond 10 Gbps performance with next-generation firewalls.
Finally, we used sFlow processing in the design to keep the
visibility in the environment.

Resiliency
Our goal is to enable continuous operations of network
functionality even in the face of network failures and
rapid recovery. Here are some of the ways we are
increasing network resiliency:

Expanding the routing domain to create an equal-cost/
multiple-path design. We are using External BGP (eBGP)
to significantly scale data centers at locations with
multiple availability zones (see Figure 2).

Routing Domain

ISC

MLAG MLAG

LACP

MLAG

LACP

Leaf Leaf

Expanded Routing Domain Using eBGP

Spine Spine

Super Spine Super SpineSuper Spine Super Spine

Layer 2
Server Connectivity

ISC

MLAG MLAG

LACP

MLAG

LACP

Leaf Leaf

Spine Spine

Figure 2. We are using eBGP to expand the routing domain,
while concurrently reducing L2 connectivity to improve
network resiliency.

•	 Reducing L2 outage domains within racks. This includes
eliminating the STP to improve data throughput and
using a /31 subnet mask to conserve IP address space
for point-to-point links. The latter technique eliminates
a port channel between the leaf and spine, which in
turn, eliminates the possibility of uneven load balancing
(hash polarizations).

•	 Deploying dual home servers to increase server uptime
and enabling the network team to perform maintenance
without affecting customers.

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 5

•	 Using the standards-based Link Aggregation Control
Protocol (LACP) within IEEE 802.3ad to allow the logical
bundling of links while negotiating with far-end devices to
enable graceful removal of links that are not transmitting the
LACP. This approach reduces cabling issues and link faults.

•	 Employing Multi-Chassis Link Aggregation Grouping
(MLAG) to deliver system-level redundancy to servers.
MLAG logically teams two switches to appear as one
logical switch from the server’s perspective.

•	 Collocating critical services such as DNS and Network
Time Protocol with servers. We deployed a DNS solution
in our HPC data centers to help ensure that WAN outages
would not impact local data center functionality. Without
communication to a DNS, all servers and services fail
within the data center.

•	 Implementing a zero-congestion strategy. Network traffic
congestion is difficult to correct quickly. Our network
designs include downlink-to-uplink bandwidth ratios
to avoid congestion on links.

Supportability
The other four pillars — standardization, programmability,
security, and resiliency — combine to provide us with the
ability to maintain the designed level of performance and
availability of the network. Our use of standardization leads
to reproducible configurations and designs and reduces or
eliminates non-compliance and difficult-to-support one-off
designs. This, in turn, leads to repeatable and standards-
compliant predictive troubleshooting. The result is a modern,
highly automated, and resilient SDN that powers Intel’s
digital transformation through seamless secure connectivity.

Solution Architecture
The following sections detail some of the high-level features
of our SDN architecture.

Physical Layer
There are three key vectors used to design large-scale
data centers:

•	 Ethernet switch

•	 Data center topology

•	 Physical media selection

Industry-wide discussions with fellow travelers have helped
us discover that networks inside hyper-scale data centers are
converging to a CLOS topology. This is because the CLOS
topology is modular, scalable, and flexible. In this topology,
multistage switches interconnect to support thousands
of Ethernet ports, which in turn support servers within
the data center.

We use a five-stage CLOS topology, as shown in Figure 3.
Connections between servers and the leaf are typically
direct-attach copper (DAC) cables for cost-effectiveness.
In contrast, connections between the leaf and spine and
between the spine and super/universal spine require fiber-
optic single-mode fiber (SMF). This is because switches
can be more than 300 meters apart. Multimode fiber can
support a distance of only 70 meters, even at 25 Gbps. SMF
also increases the longevity of the design, as it can support
not only 100 Gbps but 400 Gbps and beyond.

Super Spine/Core

Spine

Leaf

Single-Mode Fiber (SMF) and
Intel® Silicon PhotonicsIntel® Silicon Photonics

SMF and Intel Silicon PhotonicsSMF and Intel Silicon Photonics

Figure 3. The optical connections (gray lines) can be hundreds of meters apart. We are migrating to SMF as we deploy
more 100/400 Gbps connectivity.

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 6

Our CLOS topology allows fixed-form-factor switches at
most of the topology stages, including top-of-rack (ToR),
leaf, and spine. We also use a chassis-less design (small
form factor) instead of investing in a bigger chassis. Our
evaluations show the cost of a port is 2x to 3x higher than a
small chassis with numerous interconnections.3 Fixed-form-
factor switches and a chassis-less design have enabled us
to adopt new technology faster compared to using other
designs. Therefore, we can increase our use of 100/400
Gbps connectivity at a lower total cost.

When we began to transition to 100 Gbps, we upgraded
the fiber infrastructure to support SMF within our data
centers. We selected a product that required only two
strands (either 100G CWDM4 or 400G, depending on
usage) for the transceiver, which lowered our fiber costs.
As seen in Figure 3, there can be hundreds of transceivers
required to interconnect the switches to build the high-
speed data center fabric. To optimize cost efficiency, it
was important to select the appropriate type of transceiver.
We chose Intel® Silicon Photonics transceivers4 over
conventional optics or discrete laser-based technology.
Our evaluation showed that Intel Silicon Photonics
transceivers offer the following benefits compared
to other solutions:

•	 Less power consumption
•	 Support for higher density
•	 Optimum total cost equation

We standardized on the 100G CWDM4 MSA QSFP28
model because it can span up to 2 kilometers on SMF.
This model can also operate in a wide range of temperatures
(0° to 70° Celsius) at low power (3.5 watts), which was
important for a variety of data center deployments. Later,
we also began using 400G QSFP-DD FR4 transceivers
(2 kilometers, duplex SMF, 0°-70° Celsius, 10 watts).

Orchestration and Automation Framework 1.0
Comprehensive SDN at our scale is not possible without an
automated management plane. We originally developed an
orchestration and automation framework (we’ll call it version
1.0 here) that integrates with the SDN controller to drive the
overall orchestration in both the Design (that is, HPC) and
Office/Enterprise data center environments. Consistent
with our typical approach to deploying frameworks, we used
existing in-house platform and hosting solutions whenever
possible. Examples include server builds, DBaaS,5 the Cloud
Foundry application service, Ansible, our in-house Git
repository system, DHCP, and DNS. We used these standard
network services to aid in network automation.

When we first deployed the 1.0 version of our orchestration
and automation platform, we were able to support our
initial deployments by using short Python scripts that used
Jinja2 templates and yaml seed files to enable automatic
provisioning, streaming telemetry, and standard configuration
management. The orchestration solution provided zero-

3	 Based on internal Intel IT measurements.
4	 Intel® Silicon Photonics 100G CWDM4 Brief,” intel.com/content/www/us/en/architecture-

and-technology/silicon-photonics/optical-transceiver-100g-cwdm4-qsfp28-brief.html.
5	 IT@Intel, “Increase Business Velocity with Enterprise Database as a Service,” https://

www.intel.com/content/www/us/en/it-management/intel-it-best-practices/increase-
business-velocity-with-enterprise-dbaas-paper.html.

touch provisioning (ZTP), where a network technician can
edit a DHCP scope and power on a new switch, allowing it
to provision itself enough to onboard into the orchestration
system. From there, our scripts, templates, and yaml files
could push the proper configurations and image onto the
switch with just a few clicks.

However, we quickly realized we needed an NSoT for our
network attributes—a centralized, API-accessible repository
that could provide our scripts and templates with the attribute
data they needed for device configuration, such as VLAN,
ASNs, authentication servers, and management IP addresses.
Initially, we used disparate yaml files for this purpose, but they
quickly became unmanageable. We also found ourselves
limited by the orchestration development environment
because we could not reference other scripts and did not have
access to an integrated development environment. We were
limited to simply editing siloed scripts in a browser.

To solve these issues, we used our in-house, enterprise-
grade DBaaS to create an NSoT database, for which
we designed our own schema. We moved our code that
generated configurations, along with the templates they
consumed, into our in-house Git repository. To avoid having
to manage application server operating systems, we built
a Web Server Gateway Interface (WSGI) in our in-house
Cloud Foundry environment, which provided a remotely
accessible backend to our orchestration controller. Next,
we changed the scripts on the orchestration platform to
be lightweight, rarely changing “caller” scripts that gather
local device data and pass it via API call to our WSGI. The
configurations are then rendered off-server and returned to
the caller script. Then, the orchestration platform deploys
those configurations to the devices (see Figure 4).

Commercial Orchestration Platform

Python API

In-House
Configuration Renderer

External
Data Sources

IPAM

Templates
MySQL

CMDB
…

SDN Orchestration and Automation Framework

Python

Streaming
Telemetry

Configuration
Push

Server Management

Version 1.0

DBaaS NSoT

User

Design or Office and Enterprise Data Center

Figure 4. Our SDN orchestration and automation
framework 1.0 used a commercial management plane
portal, along with in-house capabilities for network
configuration data, templates, scripts, and more.

http://intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-cwdm4-qsfp28-brief.html
http://intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-cwdm4-qsfp28-brief.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/increase-business-velocity-with-enterprise-dbaas-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/increase-business-velocity-with-enterprise-dbaas-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/increase-business-velocity-with-enterprise-dbaas-paper.html

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 7

In addition to our in-house resources, we chose a turn-key
commercial management and orchestration platform to
help us quickly provision and manage the new equipment,
which consisted of more than 2,000 new switches across
Office/Enterprise and Design data centers. The supplier
offered several platform choices, including supplier-provided
appliances, a VM image hosted on-site, and an as-a-service
cloud instance. We chose the VM option. This entailed
procuring our own infrastructure servers, adding our hosting-
supported OS build, and installing an open-source hypervisor
(KVM) to host our 17 regional orchestration clusters.

While the initial version of the orchestration and automation
framework solved many problems, it wasn’t flawless. Here
are some of the challenges we faced:

•	 Server sprawl and lack of scalability. For each of the 17
regional orchestration clusters, we had three servers for
failover redundancy (for a total of 51 servers). We had
to manage all of these infrastructure servers ourselves.
Additionally, each VM instance could scale only to a certain
number of network devices. As our network grew, so did
the number of VMs. Our team was good at its main job—
designing and deploying networks. However, since the
commercial platform was not easily scalable, we ended
up performing most of the development work ourselves,
which meant we had less time to spend on our primary
responsibilities.

•	 OS sprawl. Although we benefitted from in-house hosting
platforms without a fleet of application/database servers to
manage, we found ourselves with a large fleet of hypervisors
that were hosting our orchestration clusters. Even though
we had standard builds for specific environments, we ended
up with a total of 90 operating systems using three different
Linux builds. We took advantage of our in-house managed
Ansible platform to distribute files, perform upgrades, add
monitoring agents, and perform other tasks.

•	 Cost. The recurring per-device licensing costs for the
commercial platform grew into the millions as we expanded
to thousands of network devices in our environment. In short,
the system became cost prohibitive. For these reasons,
we sought alternative solutions.

Benefits of Moving to an Open-Source
Orchestration and Automation Solution
Due to the challenges with the 1.0 version of our orchestration
and automation framework, we considered alternative
solutions. We found only two or three acceptable, high-quality
commercial offerings, and they did not satisfy our need for
cost reduction. Therefore, we decided to explore the open-
source community’s orchestration and automation offerings.

There are several benefits of using open source:

•	 Innovation. Open-source solutions enable us to take
advantage of collective innovation while mitigating the risks
associated with increased technical debt. In addition, they
meet our requirements for regular updates and patches
that enhance Intel’s security and agility. In fact, open-source
software releases are often on par with or exceed vendors’
support timelines. Embracing open-source, off-the-shelf

solutions enables us to focus our resources on next-level
innovation rather than routine maintenance.

•	 Vendor neutrality. Because the communities are “open,”
the software is vendor-neutral, protecting us from risk
associated with relying on one or two suppliers.

•	 Open standards for programmability. In alignment with our
previous commitment to network programmability, open-
source automation and orchestration solutions typically use
open standards, which promote programmability—meaning
that our automation would be similarly programmable.

Orchestration and Automation Framework 2.0
The open-source orchestration and automation solution that
we chose is called Nautobot. It is scalable and uses a software
stack that is closely aligned with our existing stack. We were
also confident that the chosen solution would easily deploy on
Intel® architecture-based infrastructure. Our 2.0 version of
the orchestration and automation framework (Figure 5 on the
following page) continues to use our internally hosted DBaaS
platform and other in-house capabilities. However, the new
framework differs from version 1.0 in several crucial aspects:

•	 Modular deployment with containerization. Rather
than being VM-based, 2.0 uses containers. We can spin
up new containers (frontend/backend and workers)
dynamically. We use our in-house secret store, container
image repository, container orchestration systems, and
load balancing infrastructure. We take an infrastructure-as-
code (IaC) and continuous integration/continuous delivery
(CI/CD) approach to alleviate administrative burdens.

•	 Enhanced scalability. The modular deployment enabled
by containers allows us to scale horizontally as needed.
Minimal configuration is needed to simply increase the
number of workers and redeploy. In our previous system,
we were often constrained by the physical resources of
a bare-metal server, and the only way to scale was to add
additional clusters.

•	 No servers to manage. We continue to use the in-house
DBaaS servers, and we are now using infrastructure servers
provided by Intel’s own hosting team, which means our team
no longer has to manage any servers at all. The ability to
scale, combined with leveraging self-service load-balancing
and database services, has provided much-needed relief to
our administrative overhead. We can focus all our effort on
network design and deployment.

•	 Off-the-shelf database schema for the NSoT (Nautobot).
We now use an off-the-shelf NSoT system that has the
schema already defined, which saves us a significant
amount of work.

•	 Our production NSoT is architected to spread across
two geolocations, ensuring high availability with the
ability to deploy each lifecycle automatically through CI/
CD pipelines. We adhere to a development, staging, and
production lifecycle for our NSoT, which has proven useful
in our Greenfield and Brownfield migration efforts as well
as in our development processes. This gave our research-
and-development team a place to simulate production
changes without impacting our production NSoT itself.

https://github.com/nautobot/nautobot

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 8

External
Data Sources

IPAM

CMDB

SDN Orchestration and Automation Framework

Configuration Push

Version 2.0

Site A

Scheduler

DBaaS

Active Passive
(Postgres Database)

Design or Office and Enterprise
Data Center

Site B

Streaming
Telemetry

Frontend/
Backend

Workers

Nautobot (Open-Source)

User

Git
Repository

Jinja2
Templates

Containers as a Service (CaaS)

Orchestration Layer Rendered
Configs

ActiveActive

Figure 5. Version 2.0 of our orchestration and automation
framework is based on open-source software, eliminates
management of infrastructure servers, and is highly
modular and scalable.

Application Layer
Having selected our core toolsets and deployed them
on our in-house hosted platforms, we built the foundation
of the application layer to facilitate not only migrations
of our existing network environments but also the rapid
provisioning of new buildouts. We focused initially on
building the integrated components of the application,
adhering to a “customize when necessary” mentality to
enable our small team to meet our aggressive deadlines.

We first looked at all the data we needed to generate our
standard configurations and mapped out how they would
be represented in the NSoT’s schema. We then crafted
a GraphQL query that would fetch this data and pass it
along to our repository of Jinja2 templates. This flow was
completely included in the NSoT application, requiring
only that we bring our knowledge of the network data
components, some basic templates, and a repository.

We then were able to build a ZTP system, using the capabilities
of our network platform with our new NSoT. Our out-of-the-
box devices now boot up then download and run a small
Python script that registers the device into our NSoT. Devices
also upgrade their images based on the appropriate image
definition for that platform (defined per-platform in our NSoT).
This proved rather easy to tailor to our environment and
gave us the flexibility to adapt over time as necessary.

Next, we needed a mechanism to get our network data into
our NSoT, both for our existing networks as well as new
provisioning. We used our NSoT’s native self-service script-
running feature to provide this service. This framework
allowed us to build our own logic around obtaining relevant
data components and provided a mechanism to insert the
data into the proper areas of the data model. This was a
fundamental component our network engineers needed
to handle the volume of data that needed to be ingested.

Beyond the native components in the application stack,
we’ve been able to use available libraries and modules to
ease programmatic needs as they arise. This has made the
system more approachable for our network engineers as
they ramp up their automation skillsets.

Underlay Technology
The primary goal of the underlay network is to provide a routed
path for the overlay networks, so that VxLAN Virtual Tunnel
End Points (VTEPs) can communicate with each other.
Our overlay network is built on top of a highly redundant
underlay network, using L3 point-to-point connections
to build our fabric (see Figure 6).

The underlay network is documented in a VRF global table,
so that the information is available to all overlay networks.
We use the same dynamic routing protocol that we use for
overlay networks (although other options do exist), because
doing so offers the following benefits:

•	 Ease of management, because we are using a single
protocol.

•	 Lower complexity due to reuse of the same autonomous
system and configuration blocks.

•	 Ability to scale well in large topologies.

•	 Support for the BGP open standard. We use Interior
BGP at the leaf layer (redundant L2/L3 pairs) and eBGP
between spine layers (no route reflectors needed).

Our approach to the underlay network differs slightly
between the Enterprise and Design data center
environments.

Underlay/Overlay Network Architecture

Underlay Network

Leaf Leaf Leaf Leaf Leaf Leaf

Super SpineSuper Spine Super Spine

Spine Spine Spine Spine

Super Spine

EVPN

Overlay Network
MAC-VRF

Overlay Network
IP-VRF

LeafLeaf

Figure 6. Our overlay network is based on a highly
redundant underlay network.

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 9

Office and Enterprise Data Center

The Enterprise data center environment had use cases
for overlay networks from the beginning, so we built the
underlay network with that in mind. However, initially we
did not choose to expose the underlay network’s global VRF
table outside of each data center, which prevented us from
being able to easily extend an overlay across data centers
(because overlays need underlays). We have implemented
a workaround to this situation, but it would have been easier
if the underlay was exposed across data centers.

Using an underlay/overlay approach in the Enterprise
environment enables us to extend L2 VLAN everywhere
over an L3 network using Type 2–Host MAC and IP
Addresses (MAC-VRF), so there are no more looping
outages. Also, we can isolate networks using VRF tables
and extend that isolation throughout the fabric.

Design Data Centers

The Design environment is a large-scale HPC infrastructure
with multitenancy requirements. We built the leaf/spine
infrastructure using the same principles and practices as we
would for an underlay that was going to support an overlay:

•	 Direct peer-to-peer peering to physical interfaces for
faster convergence.

•	 Equal-cost multipath to help improve latency and optimize
data flow.

•	 All devices have loopback interfaces that are in the
global default VRF table but are not used to peer with
for underlay.

To support multitenancy, Type 5–IP prefix information
(IP VRF) model is used.

One of the key underlying challenges was to scale the
multiple PODs interconnected in a mega data center.
At one of our large data centers, we had to implement a five-
stage CLOS architecture by introducing a chassis-based
super-spine layer that can support 100 Gbps and 400 Gbps
port speeds with minimum oversubscription between the
spine and super-spine layers.

Overlay Technology
An overlay network creates a logical structure on top of the
physical structure of the underlay network. In our Office/
Enterprise data centers, we needed to provide L2 mobility
across the underlay fabric, while in the Design data centers, we
built an L3 secure enclave overlay network. Some important
attributes of our overlay networks include the following:

•	 VxLANs allow encapsulation for cross-site network
extensions, enabling both VLAN and VRF extensions.
We use the BGP’s EVPN extension for dynamic VxLAN
learning. We are also currently conducting a proof of
concept to explore the use of static VxLAN mapping
for cross-site network extensions.

•	 The EVPN control plane is a distributed, dynamic learning
plane that is not tied to a central controller.

•	 Distributed L3 means that within zones, we can use
anycast IPs for distributed default gateways, which helps
ensure the shortest routed path between systems in the
same VRF table.

Our overlay networks build enclaves, which are networking
environments that operate with a common set of security
controls. The demilitarized zone (DMZ) is a networking
environment that buffers between discreet networking
environments and consists of a VPN and Proxy environments.
Typically, one of these is untrusted, which usually is the
internet. Then, we define separate security zones or enclaves
(see Figure 6) for external and secure internal hosting (also
called a secure internal zone, or SIZ). The enclaves include
backup and recovery networks, pocket networks (dedicated
network environments that are application-purpose-built
and protected by a firewall) and network management.

Office and Enterprise Data Centers

Because the Enterprise domain encompasses a diverse
range of use cases, each with its own unique security
requirements, we deployed enclaves in our Enterprise
data centers from the beginning (Figure 7). For internally
hosted applications, we gradually established multiple
security zones to isolate components of two-tier and three-
tier applications. In certain instances, we also deployed
specific application-level enclaves. Generally, we create
distinct security zones for each internet-facing service
and application.

Extranet Services Module

Network Security Detection Services
Network-Based Intrusion

Detection System
Network Behavior

Anomaly Detection Botnet Detection

ICC/Leased Line
VPN Termination

ICC Remote Access

DatabaseCollaboration
Services

DatabaseRemote Desktop
Services

Utility Services Module

Real-Time
Communications

Internal DNS

Internal Mail

Proxy Cluster

VPN Gateways

WAN VPN

External Mail

GLB

External DNS

Hosting Services Module

DatabaseDatabase DatabaseApplication
Servers

Application
Front-End

Web Application
Firewall

DatabaseApplication
ServersWeb Server

Farm

Guest Internet Access

DatabaseGuest Access
Services

In
ne

r F
ir

ew
al

l C
lu

st
er

s

O
ut

er
 F

ir
ew

al
l C

lu
st

er
s

Office and Enterprise Data Center Enclaves

Figure 7. We use enclaves (indicated by the colored boxes),
which are networking environments that operate with a
common set of security controls, to increase security posture.

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 10

Design Data Centers

Our Design environment originally did not need overlay
networks. But as new use cases were introduced, we
needed to move beyond router ACLs to adding enclaves
with special security features. In particular, adding next-
generation firewall-grade security for select HPC networks
was challenging, labor-intensive, and often took weeks
to complete because of the need for separate network
switches and dedicated racks. We resolved these issues by
creating a solution that is portable, granular, and scalable:

•	 Portable. The ability to provide security to disparate,
existing networks as well as new networks and be
location‑independent within a given data center.

•	 Granular. The ability to run select subnets through the
firewall while letting others bypass.

•	 Scalable. The ability to support multiple tenants with
low configuration overhead, where the security posture
is handled by the Information Security Team (not by the
network team).

Our solution starts at the leaf, where we use a VRF
construct for our segmentation, providing security
by routing (or lack thereof). All subnets inside the VRF
can freely talk to each other but cannot talk to anything
outside the VRF. This solves the segmentation on the
leaf, but the VRF isolation is only locally significant.
The next component of our solution involved extending
that VRF across the data center to wherever our firewalls
were located, often several hops away. We used VxLAN
to extend the VRF and used EVPN for the controller.
Then, the service leaf pair that was connected to the
firewall could serve as the VTEP, decapsulating the VRF
traffic and sending it to the firewall policy for processing.

The HPC security solution provides the following benefits:

•	 We can use an app that spans multiple subnets in multiple
physical areas of the data center, and all these subnets can
be in the same isolation bucket (VRF). The subnets can
talk to each other without having to go through the firewall,
but any other traffic in/out of that bucket must traverse
the firewall policy.

•	 We are able to extend any enclave or secure network
throughout the data center; there is no need to move
enclosures.

•	 We have improved provisioning time; now it takes only
two hours instead of eight days to secure the network.

•	 All security happens at the firewall with enhanced
monitoring and logging.

•	 There is no impact on non-secure network traffic flow.

We have implemented this new security solution across
all Design data centers, and it is pervasively used for
segmentation and isolation.

Migration Strategy
To move our Office/Enterprise and Design data centers to the
new SDN architecture, we built the new IP fabric in parallel in
the data center. Any new systems were deployed directly to
the new fabric while we began migrating existing racks a few
at a time to the new fabric. For the HPC environment, there
was no downtime for a compute rack move, while file server
migration was done without downtime by working closely
with the file server administrator team. In Enterprise data
centers, we used quarterly scheduled downtime to migrate
L3, firewalls, and load balancers to the new fabric (only one
period of downtime per data center), and migrated one row at a
time to the new fabric. We found that it takes six to eight hours
of downtime for large data centers and three to four hours for
medium data centers for the Enterprise migration.

Figure 8 on this page and Figure 9 on the next page,
respectively, show our migration strategy for the Enterprise
and Design data centers. Because the data centers
have a low tolerance for outage windows, we adopted a
phased migration approach, where layers from the legacy
environment are removed first, with the client connections
still intact. Subsequent phases involve staging redundant
connections to the newly built infrastructure and then
simultaneously cutting the links to the legacy environment
while bringing up the new links.

We have migrated 90% of the data centers over the last
five years (Figure 10 on the following page).

Design Center Migration Strategy

Super Spine Super SpineSuper Spine Super Spine WAN WAN

Compute Pod
Migration Destination

Leaf Leaf Leaf Leaf

Spine Spine

Storage Pod

Spine Spine

 Border Router Border Router

Leaf Leaf Leaf Leaf

Legacy Data Center

 Core Router Core Router

Distribution
Layer

Distribution
Layer

Figure 8. Interconnect leaf layer connecting legacy data center with new fabric.

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 11

Office and Enterprise Migration Strategy

Super Spine Super Spine WAN WAN

Compute Pod

Leaf Leaf Leaf Leaf

Spine Spine

Services
Load Balancer, Firewall, eBaR

Leaf Leaf Leaf Leaf

Interconnect Leaf

Internal

Legacy
Data Center

Leaf Leaf

Border Leaf Border Leaf

Figure 9. Border router connecting the old topology with the new topology.

Data Center SDN Adoption Roadmap

0

1000

2000

3000

4000

5000

6000

2019

3336

5056

6000

S
w

it
ch

 C
ou

nt

5405 5317

3847

4722

5755

3%

20%

42%

56%

71% 86%

96% 100%

2020 2021 2022 2023 2024 2025 2026

Percent SDN

Figure 10. Over the last five years, we have migrated 90%
of all data centers to the new SDN architecture.

Results
Our adoption of SDN and automation architecture has
provided numerous benefits to Intel, as detailed in the
following sections.

Overall SDN Benefits
•	 Network provisioning improvement. It used to take

nearly eight hours to provision networks for entire racks of
servers from TOR switches. Multiple manual components
contributed to the long lead time, including initial
switch standard software and baseline configuration,
provisioning of L2 and L3 networks, configurations of L2
and L3 redundancy, setup of DNS records, and, finally,
giving the correct persona to a switch. With the new
software-defined and automated architecture, all these
components are built as part of baseline configurations
and integration with IP address management, which has
reduced the provisioning time to less than two hours.

•	 Improvement in reliability and stability. We have improved
the reliability of the data center and reduced the number
of performance-related incidents by 70%. Multiple factors
contributed to these improvements, such as using multiple

100 Gbps connectivity (which increased the bandwidth by
2-8x) and standard deployment automation that eliminates
human errors in configuration. As shown in Figure 11, we
have not had a major network incident in over four years
across Design data centers worldwide — amply illustrating
the robustness of the solution.

•	 Efficiency. We saw 25% year-over-year growth in Intel’s
Design data centers. Our network team was able to support
this higher volume of work without increasing staff. This was
only possible due to the direct value of SDN and automating
Day 0 and Day 1 tasks. We have achieved greater than 20%
efficiency improvements with the SDN architecture to date.

•	 Flexibility. An additional benefit of the open, standards-
based SDN and orchestration layer is the ability to
add custom network layers to meet unique business
requirements. In contrast, a closed-loop, supplier-centric
SDN solution offers very limited ability to make these
types of changes. Over the years, we have made multiple
value-add changes to the automation to adjust to the
architecture changes in the data center.

Major Incident Reduction

2020
0

2

4

6

8

10

12

2021 2022 2023 2024

M
aj

or
 In

ci
de

nt
 C

ou
nt

Office and Enterprise Data Center
Design Data Center

12

0

2

0 0 0

1

Almost Zero Major Incidents

0

Figure 11. Our adoption of SDN across Design, Office, and
Enterprise data centers has enabled us to nearly eliminate
major network incidents.

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 12

Benefits Specific to Orchestration and Automation 2.0
As we began integrating our version 2.0 of the orchestration
and automation framework through a pilot project and some
small data center migrations, we observed some expected
efficiency gains, as well as some unexpected benefits:

•	 Greenfield device provisioning: As expected, our new
ZTP is paying dividends on each new installation. The
process requires only a single step (minimal initial device
data upload) compared to the previously required multiple
steps (initial data upload, phase 1 ZTP, image delivery,
baseline configuration generation, and configuration
push). Our new process also alleviates limitations from the
previous system by pre-loading the appropriate software
image (determined by the values in our NSoT).

•	 Brownfield data import: The tool we developed to pull data
in from existing devices has proven accurate and efficient.
The engineer simply inputs a list of all devices for the
environment they are migrating, and our script crawls each
device, fetches the relevant data values, and then stores
them appropriately based on the schema of our NSoT.

•	 Reconciliation to standard: While our previous system
generated the majority of the configurations to standard,
our engineers had the latitude to easily customize
a specific device’s configuration, leading to many
deviations. An unexpected side benefit to our method of
migration is a forced reconciliation to standard, as the new
configurations are rendered completely against the NSoT
data. The trade-off is a more time-consuming final step
in the migration to ensure the reconciliation to standard
doesn’t have a negative impact. However, the upside is an
environment that is significantly more compliant—and as
our environment standardization increases, the ease and
ability to automate it correspondingly increases.

Next Steps
Over the next three months, we plan to complete the migration
of all our data center network environments to version 2.0
of the orchestration and automation framework. Following
this, we will shift our focus to enhancing the framework by
integrating network validation tools (both pre- and post-
change), streaming telemetry, and expanding self-service
functionality and IT Service Management integration. As
our network provisioning becomes increasingly automated,
we are already undertaking efforts to transform our network
engineering team’s skill set and mindset to align more closely
with DevOps methodologies. Our vision is to evolve into a
team that possesses not only a deep understanding of the
networking aspects of our environment but also the ability to
automate and develop it—an amalgamation of skill sets that
are increasingly rare in today’s job market.

Conclusion
We believe that our selection of open, standards-based
technologies for constructing underlay and overlay networks,
combined with an open-source orchestration layer, has been
essential in granting us the flexibility to adapt to business
needs and realize the value of a broader ecosystem.

Our network architecture and strategy are deliberately
designed and data-driven to help ensure the performance
levels and network availability that our customers need
to succeed.

The leaf-spine underlay architecture utilizing open,
standards-based protocols within an SDN environment
allows us to accommodate the 25% annual growth in
network capacity while achieving a 4x reduction in
provisioning time. This new resilient solution significantly
enhances the reliability and stability of our data center
network. We can now integrate various security use cases
onto a unified infrastructure and onboard new security
applications with minimal additional effort. The foundation
for these advancements was the comprehensive development
of automation and standardization of the data center
architectural elements, enabling them to be easily
replicated in modular building blocks.

Related Content
If you liked this paper, you may also be interested in these
related stories:

•	 IT@Intel: Validating and Evolving Intel IT’s
Multicloud Strategy

•	 IT@Intel: Data Center Strategy Leading Intel’s
Business Transformation

•	 IT@Intel: Building a Multi-Cloud-Ready
Enterprise Network

•	 IT@Intel: Transforming Industrial Manufacturing
with Software-Defined Networking

For more information on Intel IT best
practices, visit intel.com/IT.

IT@Intel
We connect IT professionals with their IT peers
inside Intel. Our IT department solves some of
today’s most demanding and complex technology
issues, and we want to share these lessons directly
with our fellow IT professionals in an open peer-to-
peer forum.

Our goal is simple: improve efficiency throughout
the organization and enhance the business value of
IT investments.

Follow us and join the conversation on X or LinkedIn.
Visit us today at intel.com/IT if you would like to
learn more.

http://www.intel.com/IT
http://x.com/intelbusiness
https://www.linkedin.com/showcase/intel-business/
http://www.intel.com/it

White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 13

	

	 Intel technologies may require enabled hardware, software, or service activation.
	 No product or component can be absolutely secure.
	 Your costs and results may vary.
	 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
	 0425/WWES/KC/PDF

	Background
	Selecting an SDN Approach and Architecture Components
	Improving Scalability by Adopting a Leaf-Spine Network Architecture
	Strategy for a Scalable, Robust SDN Architecture
	Solution Architecture
	Migration Strategy
	Results
	Next Steps
	Conclusion
	Related Content

