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Executive Summary
As Intel’s business expands, the demand for data center network capacity has 
surged by over 25% annually. Furthermore, business pressures necessitate that 
new capacity be operational within 24 hours. As early as 2014, we acknowledged the 
potential of software-defined networking (SDN) to help address these challenges. 

After evaluating the components and architectures of SDN, we opted for an 
open, standards-based architecture rather than a supplier-centric solution. 
As our SDN architecture has evolved, we have established a standardized 
and scalable data center network architecture that extensively uses automation. 
The open interface provides the flexibility to integrate additional business-driven 
automation, enabling us to meet our growth objective and timeline requirements.

Our network architecture strategy relies on five pillars:

•	 Scalability through standardization. We maintain compliancy with our 
standards for hardware, OS, device roles, topology, configurations, and 
solutions to enable automation and rapid scalability at large data centers.1

•	 Programmability. This allows our workforce to adapt to significant growth in 
network scale with improved speed. It also facilitates full lifecycle provisioning 
of network infrastructure from Day 0 to end of life. 

•	 Security. We have the capability to segment the network using a common 
infrastructure to support various use cases and enhance data center security.

•	 Resiliency. Built-in network resiliency helps ensure the continuous operation 
of network functionality, facilitates rapid recovery, and maintains performance 
even in compromised conditions.

•	 Supportability. We strive to be sure the network maintains its designed level of 
performance and availability of the network. Adhering to standards facilitates 
troubleshooting.

Over the past five years, we have migrated the majority of our data centers to a 
new SDN architecture that employs a leaf-spine underlay combined with overlay 
networks. By utilizing Industry-standard components and protocols, we have 
significantly improved network delivery times while reducing the need for human 
resources, thereby enhancing overall efficiency. Additionally, we have increased 
the stability and reliability of the network and consolidated multiple dedicated 
customer networks onto a common infrastructure that’s integrated with 
enhanced security controls.

1	 Early in our SDN adoption, we relied on naming conventions to define attributes of a device. In our new system, 
we no longer rely on naming conventions, but rather store those attributes in our Network Source of Truth (NSoT).
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Acronyms
ACL	 access control list
ASN	 autonomous system number
BGP	 Border Gateway Protocol
CMDB	 Configuration Management Database
DHCP	 Dynamic Host Configuration Protocol
DNS	 Domain Name System
DOME	 Design, Office, Manufacturing 		

	 and Enterprise
eBGP	 External Border Gateway Protocol
EVPN 	 Ethernet Virtual Private Network
HPC	 high-performance computing
LACP	 Link Aggregation Control Protocol
MLAG	 Multi-Chassis Link Aggregation Grouping
NSoT	 Network Source of Truth
POD	 point of delivery
SDN	 software-defined networking
SMF	 single-mode fiber
STP	 Spanning Tree Protocol
TOR	 top-of-rack
VTEP	 Virtual Tunnel End Point
VRF	 virtual routing and forwarding
VNI	 VxLAN Network ID
VxLAN	 Virtual Extensible Local Area Network
WSGI	 Web Server Gateway Interface
ZTP	 zero-touch provisioning

Background
Intel’s data centers2 are the heart of a thriving, complex 
business. Intel IT operates 55 data center modules at 15 
data center sites. These sites have a total capacity of 126 MW, 
housing more than 418,000 servers that underpin the 
computing needs of approximately 100,000 employees. 
To support the business needs of Intel’s critical business 
functions—Design, Office, Manufacturing, and Enterprise 
(DOME)—while operating our data centers as efficiently 
as possible, Intel IT has engaged in data center network 
modernization for many years. Intel’s business is becoming 
increasingly data-driven, relying on machine learning, AI, 
big data analytics, and automation. As data explodes, we 
are experiencing greater than 25% growth in demand for 
network capacity every year. In parallel, we desire to put the 
new capacity into production within 24 hours once received 
to optimize the value of the investment. 

In 2014, we began evaluating software-defined networking 
(SDN) solutions as a way to meet these data center 
challenges. Until that time, traditional networking approaches 
using fixed-purpose hardware met the needs of client/server 
computing. But, with the proliferation of cloud-based services 
and server virtualization, along with continued business 
growth, we needed a way to keep up with a more dynamic 
computing environment, and SDN offered a lot of potential. 

2	  IT@Intel, “Data Center Strategy Leading Intel’s Business Transformation,” https://
www.intel.com/content/www/us/en/it-management/intel-it-best-practices/data-
center-strategy-paper.html.

Our SDN solution provides us with an interface that enables 
programmatic manageability. It also offers an integrated 
and automated control plane, which allows us to scale while 
maintaining a standardized environment. We now use our 
data center SDN architecture in three of the four DOME 
environments; however, the Manufacturing environment 
uses a different approach due to its unique business drivers.

Selecting an SDN Approach 
and Architecture Components
In 2018, as we started exploring how to adopt 100 Gbps 
technology, we scanned the industry and SDN solutions. 
As the SDN market evolved, we noted that solutions tended 
to fall into two categories: 

•	 Closed-loop SDN using supplier-centric technologies.

•	 Open, standards-based SDN that supports next-
generation data center architectures featuring 
underlay and overlay designs.

While each approach has its advantages, we determined that 
developing standardized, scalable building blocks for our 
data center network architecture would better support the 
automation necessary for on-demand provisioning, self-
healing, and scalability. The open architecture enables us to 
integrate additional, business-driven automation capabilities 
to meet our specific requirements. Plus, it helps avoid vendor 
lock-in and takes advantage of a growing, evolving ecosystem.

Once we settled on an overall SDN approach and a switch 
vendor, we started large-scale migration in 2019, and we 
have migrated over 90% of Intel’s data centers to SDN 
technology over the last five years. During this time, we 
introduced new technologies and uplifted our orchestration 
platform for scale with container-based infrastructure 
and an open-source Network Source of Truth (NSoT) 
and network automation platform.

Improving Scalability by Adopting 
a Leaf-Spine Network Architecture
Traditionally, Intel’s data center network architecture was 
implemented with a three-tier hierarchical model. This 
industry-standard method of connectivity consisted of 
Core, Distribution, and Access layer switches. Using L3 
protocols for routing between the Core and Distribution 
layer switches and L2 protocols between the Distribution 
layer and the Access layer switches enabled simple, 
intuitive deployment of services that helped increase the 
supportability of our critical data centers. However, this 
architecture could not scale well enough to support Intel’s 
growth needs within its massive Design centers that use 
high-performance computing (HPC); nor could it support 
the growing complexity within the Enterprise data center 
environments. In addition, our Design and Enterprise data 
center network traffic experienced a significant shift from 
primarily north-south traffic to mostly east-west traffic. This 
shift caused congestion on the Core and Distribution layers. 
To better support the new traffic patterns and Intel’s growth, 
we are continuing to modernize our network architecture. 

https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/data-center-strategy-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/data-center-strategy-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/data-center-strategy-paper.html
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We are replacing the three-tier hierarchical model with a 
leaf-spine architecture. (See “Migration Strategy” later for 
our approach to transparently transitioning the network from 
one model to the other.)

In a leaf-spine architecture, the leaf switch is connected to 
multiple spine switches. This approach indirectly provides 
higher bandwidth and improved redundancy. By adopting 
a scalable unit of leaf and spine (also called a point of delivery, 
or POD), it is easy to scale the data center network using fixed-
configuration switches on an as-needed basis (Figure 1).

Compute Pod

Leaf Leaf Leaf Leaf

Storage Pod

Leaf Leaf Leaf Leaf

Leaf-Spine Network Architecture 

WAN WAN

 Border Leaf Border Leaf

Spine Spine Spine Spine

Super Spine Super SpineSuper Spine Super Spine

Figure 1. A leaf-spine network architecture better supports 
Intel’s data centers, compared to a traditional three-tiered 
hierarchical network architecture.

Network Fabric Design Details
To make the adoption and scaling of a leaf‑spine architecture 
most efficient, we require every aspect of the architecture to 
have repeatable building blocks (such as PODs), deterministic 
communication flow, and solution flexibility to meet a growing 
number of use cases required by Intel’s business units. This 
building-blocks approach enables large-scale deployment at 
an increased deployment velocity. Our network architecture is 
also built with strict standards and guidelines that encompass 
the full stack of our network.

To the fullest extent possible, we automate a switch’s lifecycle 
from onboarding to end of life. This lifecycle automation 
enables transparent deployment and maintenance:

•	 Day 0 zero-touch provisioning (ZTP) and onboarding.

•	 Day 1 configuration for fabric deployment.

•	 Day 2 configuration for a specific use case.

•	 End of life removal or decommissioning of the switch 
from the network.

For the underlay network, the leaf-spine design and Border 
Gateway Protocol (BGP) routing are critical aspects. To 
provide L2 mobility across the fabric and highly secure, 
transparent enclaves, overlay networks are built using Virtual 
Extensible Local Area Network (VxLAN) and BGP’s Ethernet 
Virtual Private Network (EVPN) capabilities. To optimize 
the network for non-blocking network communications, we 
have eliminated the Spanning Tree Protocol (STP) from the 
network. Also, all network switches are non-blocking-capable 

devices; this means that the switch can carry ingress/egress 
network traffic at wire speed (the maximum bandwidth of 
the interface).

Strategy for a Scalable, Robust 
SDN Architecture
Historically, our network strategy has been optimized 
predominantly for cost, although we also considered 
network performance. To better support Intel’s growing 
business, we have redefined our network strategy to pursue 
technological advances to modernize and transform the 
network to help ensure not only cost-effectiveness but also 
best-in-class service quality. The following sections provide 
some details about the five pillars that underpin our data 
center network strategy.

Scalability through Standardization

When we set our initial goals for SDN, we realized the 
solution we developed needed to be automatable and 
scalable both locally and globally. This necessitated 
a well-defined set of conventions that covered both 
local configuration parameters and those that would 
potentially have global relevance. This was an early, critical 
acknowledgment. To that end, everything was designed 
with standardization in mind. We also constructed the 
documentation so it could be interpreted by developers. 
We embedded all configuration specifications in our 
architecture guide to encourage and enable automation. 
The documentation includes variables, input parameters, 
and configuration outputs. 

Some of the critical conventions that we defined include 
the following:

•	 Device naming. We originally implemented device 
naming so that the name indicates a device’s location 
information and function. From the naming, we could 
derive configurations that are location-specific (such 
as local Domain Name System [DNS] and directory 
services) and function-specific (such as spine versus leaf 
configurations). The adoption of this naming convention 
enabled us to later programmatically migrate our fleet 
into our new NSoT, where we no longer need to rely on 
encoding the attributes of a device into the hostname, 
but rather store those attributes in our structured NSoT.

•	 VLAN definitions and parameters. We identified VLAN 
use cases and configuration parameters. Each VLAN is 
assigned to a security zone and carries certain attributes 
within the zone. Much of the automation configuration is 
based on this information. Over time, we have found the 
VLAN definition to be the most dynamic network aspect, 
as we continually add new use cases. Our VLAN construct 
has been invaluable in maintaining structure within the 
fabric as we manage new deployments.

•	 BGP autonomous system number (ASN) allocation. 
We allocated ranges based on location and within each 
data center function (Design or Office/Enterprise). 
Similar to other conventions, this allows for predictable, 
automatable deployments.
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•	 Connectivity assignments. We pre-allocated which ports 
would be assigned based on device and functionality. 
Depending on placement within the fabric, device types 
were assigned along with the connectivity conventions 
to neighboring elements.

•	 Device types and OS. We used a limited set of certified 
devices in the solution to simplify spare parts inventory 
and device support. New devices are only added as critically 
needed. Sometimes, this forces us to use devices that 
aren’t a perfect fit, but the need for consistency outweighs 
the use of one-off device types. We minimized the device 
type list to help reduce the OS count and specifications that 
we must test against. When we certify a new OS, we push 
the upgrade across the install base, which helps ensure 
that all features are available and perform as expected. 
Our approach to device types and OS use allows us to design 
without having to account for deployment inconsistencies.

•	 Base-build configurations and security specifications. 
We identified and propagated common configurations 
that incorporate security across all devices to help ensure 
stability and a common configuration to build upon.

•	 Security zones. Each identified security zone receives 
the appropriate and relevant conventions.

•	 VxLAN Network ID (VNI) allocations. We globalized VNI 
mappings with ranges pre-assigned to each data center, 
so when we implemented Data Center Interconnect (DCI), 
there were no VxLAN VNI conflicts. We could use legacy 
VLAN information within each data center without worrying 
about VLAN conflicts in other locations.

Together, these conventions enable a highly automatable 
and scalable deployment as well as a significant reduction in 
mean time to deploy (MTD) and mean time to repair (MTR).

Programmability 
Our previous network solution had limited automation 
capabilities. Onboarding network devices required physical 
touch; could be accessed only by older methods like SSH and 
command-line interfaces (CLIs); and had to be configured 
and managed individually, mostly with human intervention. 

With our new SDN solution, the devices register themselves 
with our NSoT and configure themselves with a base build, 
all from a small, distributed set of scripts. This enables us 
to enforce standardization and change control and have 
a single source of truth for our network environment. 

Once we could efficiently manage our fleet of devices, we 
programmatically generated all the relevant configurations 
for them. Having the Standardization components already 
defined algorithmically provided us with configuration 
templates and the variables that would be used per site 
and per device. It also provided us with the algorithms 
for computing the values of those variables. We created 
Python code to compute the values and pass them into 
Jinja2 templates, rendering a device configuration that is 
complete with its specific values. See the Orchestration and 
Automation Framework section later for additional details.

The combination of standardization and programmability 
gives us consistency across the network environment, 
drastically reducing human error and downtime while 
allowing us to quickly deploy new network capabilities.

Security 
A critical aspect of the new design was to enable multi-
tenant support with appropriate security at all layers over the 
common underlay data center IP fabric. We enabled multiple 
security capabilities—such as large-scale access control list 
(ACL), virtual routing and forwarding (VRF), traffic redirect, 
etc.—in the toolbox so that the right tool can be used at the 
underlay or overlay layer to control the traffic flow. Integration 
with external security capabilities like a firewall was also 
essential. It was also critical for the security solution to scale 
beyond 10 Gbps performance with next-generation firewalls. 
Finally, we used sFlow processing in the design to keep the 
visibility in the environment.

Resiliency
Our goal is to enable continuous operations of network 
functionality even in the face of network failures and 
rapid recovery. Here are some of the ways we are 
increasing network resiliency: 

Expanding the routing domain to create an equal-cost/
multiple-path design. We are using External BGP (eBGP) 
to significantly scale data centers at locations with 
multiple availability zones (see Figure 2).

Routing Domain
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MLAG MLAG

LACP

MLAG

LACP

Leaf Leaf

Expanded Routing Domain Using eBGP

Spine Spine

Super Spine Super SpineSuper Spine Super Spine

Layer 2
Server Connectivity

ISC

MLAG MLAG

LACP

MLAG

LACP

Leaf Leaf

Spine Spine

Figure 2. We are using eBGP to expand the routing domain, 
while concurrently reducing L2 connectivity to improve 
network resiliency.

•	 Reducing L2 outage domains within racks. This includes 
eliminating the STP to improve data throughput and 
using a /31 subnet mask to conserve IP address space 
for point-to-point links. The latter technique eliminates 
a port channel between the leaf and spine, which in 
turn, eliminates the possibility of uneven load balancing 
(hash polarizations).

•	 Deploying dual home servers to increase server uptime 
and enabling the network team to perform maintenance 
without affecting customers.
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•	 Using the standards-based Link Aggregation Control 
Protocol (LACP) within IEEE 802.3ad to allow the logical 
bundling of links while negotiating with far-end devices to 
enable graceful removal of links that are not transmitting the 
LACP. This approach reduces cabling issues and link faults.

•	 Employing Multi-Chassis Link Aggregation Grouping 
(MLAG) to deliver system-level redundancy to servers. 
MLAG logically teams two switches to appear as one 
logical switch from the server’s perspective. 

•	 Collocating critical services such as DNS and Network 
Time Protocol with servers. We deployed a DNS solution 
in our HPC data centers to help ensure that WAN outages 
would not impact local data center functionality. Without 
communication to a DNS, all servers and services fail 
within the data center.

•	 Implementing a zero-congestion strategy. Network traffic 
congestion is difficult to correct quickly. Our network 
designs include downlink-to-uplink bandwidth ratios 
to avoid congestion on links.

Supportability 
The other four pillars — standardization, programmability, 
security, and resiliency — combine to provide us with the 
ability to maintain the designed level of performance and 
availability of the network. Our use of standardization leads 
to reproducible configurations and designs and reduces or 
eliminates non-compliance and difficult-to-support one-off 
designs. This, in turn, leads to repeatable and standards-
compliant predictive troubleshooting. The result is a modern, 
highly automated, and resilient SDN that powers Intel’s 
digital transformation through seamless secure connectivity.

Solution Architecture
The following sections detail some of the high-level features 
of our SDN architecture.

Physical Layer 
There are three key vectors used to design large-scale 
data centers: 

•	 Ethernet switch 

•	 Data center topology

•	 Physical media selection 

Industry-wide discussions with fellow travelers have helped 
us discover that networks inside hyper-scale data centers are 
converging to a CLOS topology. This is because the CLOS 
topology is modular, scalable, and flexible. In this topology, 
multistage switches interconnect to support thousands 
of Ethernet ports, which in turn support servers within 
the data center. 

We use a five-stage CLOS topology, as shown in Figure 3. 
Connections between servers and the leaf are typically 
direct-attach copper (DAC) cables for cost-effectiveness. 
In contrast, connections between the leaf and spine and 
between the spine and super/universal spine require fiber-
optic single-mode fiber (SMF). This is because switches 
can be more than 300 meters apart. Multimode fiber can 
support a distance of only 70 meters, even at 25 Gbps. SMF 
also increases the longevity of the design, as it can support 
not only 100 Gbps but 400 Gbps and beyond. 

Super Spine/Core

Spine

Leaf

Single-Mode Fiber (SMF) and
Intel® Silicon PhotonicsIntel® Silicon Photonics

SMF and Intel Silicon PhotonicsSMF and Intel Silicon Photonics

Figure 3. The optical connections (gray lines) can be hundreds of meters apart. We are migrating to SMF as we deploy 
more 100/400 Gbps connectivity.
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Our CLOS topology allows fixed-form-factor switches at 
most of the topology stages, including top-of-rack (ToR), 
leaf, and spine. We also use a chassis-less design (small 
form factor) instead of investing in a bigger chassis. Our 
evaluations show the cost of a port is 2x to 3x higher than a 
small chassis with numerous interconnections.3 Fixed-form-
factor switches and a chassis-less design have enabled us 
to adopt new technology faster compared to using other 
designs. Therefore, we can increase our use of 100/400 
Gbps connectivity at a lower total cost.

When we began to transition to 100 Gbps, we upgraded 
the fiber infrastructure to support SMF within our data 
centers. We selected a product that required only two 
strands (either 100G CWDM4 or 400G, depending on 
usage) for the transceiver, which lowered our fiber costs. 
As seen in Figure 3, there can be hundreds of transceivers 
required to interconnect the switches to build the high-
speed data center fabric. To optimize cost efficiency, it 
was important to select the appropriate type of transceiver. 
We chose Intel® Silicon Photonics transceivers4 over 
conventional optics or discrete laser-based technology. 
Our evaluation showed that Intel Silicon Photonics 
transceivers offer the following benefits compared 
to other solutions:

•	 Less power consumption
•	 Support for higher density
•	 Optimum total cost equation 

We standardized on the 100G CWDM4 MSA QSFP28 
model because it can span up to 2 kilometers on SMF. 
This model can also operate in a wide range of temperatures 
(0° to 70° Celsius) at low power (3.5 watts), which was 
important for a variety of data center deployments. Later, 
we also began using 400G QSFP-DD FR4 transceivers 
(2 kilometers, duplex SMF, 0°-70° Celsius, 10 watts).

Orchestration and Automation Framework 1.0
Comprehensive SDN at our scale is not possible without an 
automated management plane. We originally developed an 
orchestration and automation framework (we’ll call it version 
1.0 here) that integrates with the SDN controller to drive the 
overall orchestration in both the Design (that is, HPC) and 
Office/Enterprise data center environments. Consistent 
with our typical approach to deploying frameworks, we used 
existing in-house platform and hosting solutions whenever 
possible. Examples include server builds, DBaaS,5 the Cloud 
Foundry application service, Ansible, our in-house Git 
repository system, DHCP, and DNS. We used these standard 
network services to aid in network automation. 

When we first deployed the 1.0 version of our orchestration 
and automation platform, we were able to support our 
initial deployments by using short Python scripts that used 
Jinja2 templates and yaml seed files to enable automatic 
provisioning, streaming telemetry, and standard configuration 
management. The orchestration solution provided zero-

3	 Based on internal Intel IT measurements.
4	 Intel® Silicon Photonics 100G CWDM4 Brief,” intel.com/content/www/us/en/architecture-

and-technology/silicon-photonics/optical-transceiver-100g-cwdm4-qsfp28-brief.html.
5	 IT@Intel, “Increase Business Velocity with Enterprise Database as a Service,” https://

www.intel.com/content/www/us/en/it-management/intel-it-best-practices/increase-
business-velocity-with-enterprise-dbaas-paper.html.

touch provisioning (ZTP), where a network technician can 
edit a DHCP scope and power on a new switch, allowing it 
to provision itself enough to onboard into the orchestration 
system. From there, our scripts, templates, and yaml files 
could push the proper configurations and image onto the 
switch with just a few clicks.

However, we quickly realized we needed an NSoT for our 
network attributes—a centralized, API-accessible repository 
that could provide our scripts and templates with the attribute 
data they needed for device configuration, such as VLAN, 
ASNs, authentication servers, and management IP addresses. 
Initially, we used disparate yaml files for this purpose, but they 
quickly became unmanageable. We also found ourselves 
limited by the orchestration development environment 
because we could not reference other scripts and did not have 
access to an integrated development environment. We were 
limited to simply editing siloed scripts in a browser. 

To solve these issues, we used our in-house, enterprise-
grade DBaaS to create an NSoT database, for which 
we designed our own schema. We moved our code that 
generated configurations, along with the templates they 
consumed, into our in-house Git repository. To avoid having 
to manage application server operating systems, we built 
a Web Server Gateway Interface (WSGI) in our in-house 
Cloud Foundry environment, which provided a remotely 
accessible backend to our orchestration controller. Next, 
we changed the scripts on the orchestration platform to 
be lightweight, rarely changing “caller” scripts that gather 
local device data and pass it via API call to our WSGI. The 
configurations are then rendered off-server and returned to 
the caller script. Then, the orchestration platform deploys 
those configurations to the devices (see Figure 4).

Commercial Orchestration Platform

Python API

In-House
Configuration Renderer

External
Data Sources

IPAM

Templates
MySQL

CMDB
…

SDN Orchestration and Automation Framework 

Python

Streaming
Telemetry

Configuration
Push

Server Management

Version 1.0

DBaaS NSoT

User

Design or Office and Enterprise Data Center

Figure 4. Our SDN orchestration and automation 
framework 1.0 used a commercial management plane 
portal, along with in-house capabilities for network 
configuration data, templates, scripts, and more.

http://intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-cwdm4-qsfp28-brief.html
http://intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-cwdm4-qsfp28-brief.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/increase-business-velocity-with-enterprise-dbaas-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/increase-business-velocity-with-enterprise-dbaas-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/increase-business-velocity-with-enterprise-dbaas-paper.html
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In addition to our in-house resources, we chose a turn-key 
commercial management and orchestration platform to 
help us quickly provision and manage the new equipment, 
which consisted of more than 2,000 new switches across 
Office/Enterprise and Design data centers. The supplier 
offered several platform choices, including supplier-provided 
appliances, a VM image hosted on-site, and an as-a-service 
cloud instance. We chose the VM option. This entailed 
procuring our own infrastructure servers, adding our hosting-
supported OS build, and installing an open-source hypervisor 
(KVM) to host our 17 regional orchestration clusters.

While the initial version of the orchestration and automation 
framework solved many problems, it wasn’t flawless. Here 
are some of the challenges we faced:

•	 Server sprawl and lack of scalability. For each of the 17 
regional orchestration clusters, we had three servers for 
failover redundancy (for a total of 51 servers). We had 
to manage all of these infrastructure servers ourselves. 
Additionally, each VM instance could scale only to a certain 
number of network devices. As our network grew, so did 
the number of VMs. Our team was good at its main job—
designing and deploying networks. However, since the 
commercial platform was not easily scalable, we ended 
up performing most of the development work ourselves, 
which meant we had less time to spend on our primary 
responsibilities.

•	 OS sprawl. Although we benefitted from in-house hosting 
platforms without a fleet of application/database servers to 
manage, we found ourselves with a large fleet of hypervisors 
that were hosting our orchestration clusters. Even though 
we had standard builds for specific environments, we ended 
up with a total of 90 operating systems using three different 
Linux builds. We took advantage of our in-house managed 
Ansible platform to distribute files, perform upgrades, add 
monitoring agents, and perform other tasks.

•	 Cost. The recurring per-device licensing costs for the 
commercial platform grew into the millions as we expanded 
to thousands of network devices in our environment. In short, 
the system became cost prohibitive. For these reasons, 
we sought alternative solutions.

Benefits of Moving to an Open-Source 
Orchestration and Automation Solution
Due to the challenges with the 1.0 version of our orchestration 
and automation framework, we considered alternative 
solutions. We found only two or three acceptable, high-quality 
commercial offerings, and they did not satisfy our need for 
cost reduction. Therefore, we decided to explore the open-
source community’s orchestration and automation offerings.

There are several benefits of using open source:

•	 Innovation. Open-source solutions enable us to take 
advantage of collective innovation while mitigating the risks 
associated with increased technical debt. In addition, they 
meet our requirements for regular updates and patches 
that enhance Intel’s security and agility. In fact, open-source 
software releases are often on par with or exceed vendors’ 
support timelines. Embracing open-source, off-the-shelf 

solutions enables us to focus our resources on next-level 
innovation rather than routine maintenance.

•	 Vendor neutrality. Because the communities are “open,” 
the software is vendor-neutral, protecting us from risk 
associated with relying on one or two suppliers.

•	 Open standards for programmability. In alignment with our 
previous commitment to network programmability, open-
source automation and orchestration solutions typically use 
open standards, which promote programmability—meaning 
that our automation would be similarly programmable. 

Orchestration and Automation Framework 2.0
The open-source orchestration and automation solution that 
we chose is called Nautobot. It is scalable and uses a software 
stack that is closely aligned with our existing stack. We were 
also confident that the chosen solution would easily deploy on 
Intel® architecture-based infrastructure. Our 2.0 version of 
the orchestration and automation framework (Figure 5 on the 
following page) continues to use our internally hosted DBaaS 
platform and other in-house capabilities. However, the new 
framework differs from version 1.0 in several crucial aspects:

•	 Modular deployment with containerization. Rather 
than being VM-based, 2.0 uses containers. We can spin 
up new containers (frontend/backend and workers) 
dynamically. We use our in-house secret store, container 
image repository, container orchestration systems, and 
load balancing infrastructure. We take an infrastructure-as-
code (IaC) and continuous integration/continuous delivery 
(CI/CD) approach to alleviate administrative burdens. 

•	 Enhanced scalability. The modular deployment enabled 
by containers allows us to scale horizontally as needed. 
Minimal configuration is needed to simply increase the 
number of workers and redeploy. In our previous system, 
we were often constrained by the physical resources of 
a bare-metal server, and the only way to scale was to add 
additional clusters. 

•	 No servers to manage. We continue to use the in-house 
DBaaS servers, and we are now using infrastructure servers 
provided by Intel’s own hosting team, which means our team 
no longer has to manage any servers at all. The ability to 
scale, combined with leveraging self-service load-balancing 
and database services, has provided much-needed relief to 
our administrative overhead. We can focus all our effort on 
network design and deployment.

•	 Off-the-shelf database schema for the NSoT (Nautobot). 
We now use an off-the-shelf NSoT system that has the 
schema already defined, which saves us a significant 
amount of work. 

•	 Our production NSoT is architected to spread across 
two geolocations, ensuring high availability with the 
ability to deploy each lifecycle automatically through CI/
CD pipelines. We adhere to a development, staging, and 
production lifecycle for our NSoT, which has proven useful 
in our Greenfield and Brownfield migration efforts as well 
as in our development processes. This gave our research-
and-development team a place to simulate production 
changes without impacting our production NSoT itself. 

https://github.com/nautobot/nautobot
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Figure 5. Version 2.0 of our orchestration and automation 
framework is based on open-source software, eliminates 
management of infrastructure servers, and is highly 
modular and scalable.

Application Layer
Having selected our core toolsets and deployed them 
on our in-house hosted platforms, we built the foundation 
of the application layer to facilitate not only migrations 
of our existing network environments but also the rapid 
provisioning of new buildouts. We focused initially on 
building the integrated components of the application, 
adhering to a “customize when necessary” mentality to 
enable our small team to meet our aggressive deadlines.

We first looked at all the data we needed to generate our 
standard configurations and mapped out how they would 
be represented in the NSoT’s schema. We then crafted 
a GraphQL query that would fetch this data and pass it 
along to our repository of Jinja2 templates. This flow was 
completely included in the NSoT application, requiring 
only that we bring our knowledge of the network data 
components, some basic templates, and a repository.

We then were able to build a ZTP system, using the capabilities 
of our network platform with our new NSoT. Our out-of-the-
box devices now boot up then download and run a small 
Python script that registers the device into our NSoT. Devices 
also upgrade their images based on the appropriate image 
definition for that platform (defined per-platform in our NSoT). 
This proved rather easy to tailor to our environment and 
gave us the flexibility to adapt over time as necessary.

Next, we needed a mechanism to get our network data into 
our NSoT, both for our existing networks as well as new 
provisioning. We used our NSoT’s native self-service script-
running feature to provide this service. This framework 
allowed us to build our own logic around obtaining relevant 
data components and provided a mechanism to insert the 
data into the proper areas of the data model. This was a 
fundamental component our network engineers needed 
to handle the volume of data that needed to be ingested.

Beyond the native components in the application stack, 
we’ve been able to use available libraries and modules to 
ease programmatic needs as they arise. This has made the 
system more approachable for our network engineers as 
they ramp up their automation skillsets.

Underlay Technology
The primary goal of the underlay network is to provide a routed 
path for the overlay networks, so that VxLAN Virtual Tunnel 
End Points (VTEPs) can communicate with each other. 
Our overlay network is built on top of a highly redundant 
underlay network, using L3 point-to-point connections 
to build our fabric (see Figure 6).

The underlay network is documented in a VRF global table, 
so that the information is available to all overlay networks. 
We use the same dynamic routing protocol that we use for 
overlay networks (although other options do exist), because 
doing so offers the following benefits:

•	 Ease of management, because we are using a single 
protocol.

•	 Lower complexity due to reuse of the same autonomous 
system and configuration blocks.

•	 Ability to scale well in large topologies.

•	 Support for the BGP open standard. We use Interior 
BGP at the leaf layer (redundant L2/L3 pairs) and eBGP 
between spine layers (no route reflectors needed).

Our approach to the underlay network differs slightly 
between the Enterprise and Design data center 
environments.

Underlay/Overlay Network Architecture 

Underlay Network

Leaf Leaf Leaf Leaf Leaf Leaf

Super SpineSuper Spine Super Spine

Spine Spine Spine Spine

Super Spine

EVPN

Overlay Network
MAC-VRF

Overlay Network
IP-VRF

LeafLeaf

Figure 6. Our overlay network is based on a highly 
redundant underlay network.



White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 9

Office and Enterprise Data Center

The Enterprise data center environment had use cases 
for overlay networks from the beginning, so we built the 
underlay network with that in mind. However, initially we 
did not choose to expose the underlay network’s global VRF 
table outside of each data center, which prevented us from 
being able to easily extend an overlay across data centers 
(because overlays need underlays). We have implemented 
a workaround to this situation, but it would have been easier 
if the underlay was exposed across data centers. 

Using an underlay/overlay approach in the Enterprise 
environment enables us to extend L2 VLAN everywhere 
over an L3 network using Type 2–Host MAC and IP 
Addresses (MAC-VRF), so there are no more looping 
outages. Also, we can isolate networks using VRF tables 
and extend that isolation throughout the fabric.

Design Data Centers

The Design environment is a large-scale HPC infrastructure 
with multitenancy requirements. We built the leaf/spine 
infrastructure using the same principles and practices as we 
would for an underlay that was going to support an overlay:

•	 Direct peer-to-peer peering to physical interfaces for 
faster convergence.

•	 Equal-cost multipath to help improve latency and optimize 
data flow.

•	 All devices have loopback interfaces that are in the 
global default VRF table but are not used to peer with 
for underlay.

To support multitenancy, Type 5–IP prefix information 
(IP VRF) model is used.

One of the key underlying challenges was to scale the 
multiple PODs interconnected in a mega data center. 
At one of our large data centers, we had to implement a five-
stage CLOS architecture by introducing a chassis-based 
super-spine layer that can support 100 Gbps and 400 Gbps 
port speeds with minimum oversubscription between the 
spine and super-spine layers. 

Overlay Technology 
An overlay network creates a logical structure on top of the 
physical structure of the underlay network. In our Office/
Enterprise data centers, we needed to provide L2 mobility 
across the underlay fabric, while in the Design data centers, we 
built an L3 secure enclave overlay network. Some important 
attributes of our overlay networks include the following:

•	 VxLANs allow encapsulation for cross-site network 
extensions, enabling both VLAN and VRF extensions. 
We use the BGP’s EVPN extension for dynamic VxLAN 
learning. We are also currently conducting a proof of 
concept to explore the use of static VxLAN mapping 
for cross-site network extensions.

•	 The EVPN control plane is a distributed, dynamic learning 
plane that is not tied to a central controller.

•	 Distributed L3 means that within zones, we can use 
anycast IPs for distributed default gateways, which helps 
ensure the shortest routed path between systems in the 
same VRF table.

Our overlay networks build enclaves, which are networking 
environments that operate with a common set of security 
controls. The demilitarized zone (DMZ) is a networking 
environment that buffers between discreet networking 
environments and consists of a VPN and Proxy environments. 
Typically, one of these is untrusted, which usually is the 
internet. Then, we define separate security zones or enclaves 
(see Figure 6) for external and secure internal hosting (also 
called a secure internal zone, or SIZ). The enclaves include 
backup and recovery networks, pocket networks (dedicated 
network environments that are application-purpose-built 
and protected by a firewall) and network management.

Office and Enterprise Data Centers

Because the Enterprise domain encompasses  a diverse 
range of use cases, each with its own unique security 
requirements, we deployed enclaves in our Enterprise 
data centers from the beginning (Figure 7). For internally 
hosted applications, we gradually established multiple 
security zones to isolate components of two-tier and three-
tier applications. In certain instances, we also deployed 
specific application-level enclaves. Generally, we create 
distinct security zones for each internet-facing service 
and application.
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Figure 7. We use enclaves (indicated by the colored boxes), 
which are networking environments that operate with a 
common set of security controls, to increase security posture.
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Design Data Centers

Our Design environment originally did not need overlay 
networks. But as new use cases were introduced, we 
needed to move beyond router ACLs to adding enclaves 
with special security features. In particular, adding next-
generation firewall-grade security for select HPC networks 
was challenging, labor-intensive, and often took weeks 
to complete because of the need for separate network 
switches and dedicated racks. We resolved these issues by 
creating a solution that is portable, granular, and scalable:

•	 Portable. The ability to provide security to disparate, 
existing networks as well as new networks and be 
location‑independent within a given data center.

•	 Granular. The ability to run select subnets through the 
firewall while letting others bypass.

•	 Scalable. The ability to support multiple tenants with 
low configuration overhead, where the security posture 
is handled by the Information Security Team (not by the 
network team).

Our solution starts at the leaf, where we use a VRF 
construct for our segmentation, providing security 
by routing (or lack thereof). All subnets inside the VRF 
can freely talk to each other but cannot talk to anything 
outside the VRF. This solves the segmentation on the 
leaf, but the VRF isolation is only locally significant. 
The next component of our solution involved extending 
that VRF across the data center to wherever our firewalls 
were located, often several hops away. We used VxLAN 
to extend the VRF and used EVPN for the controller. 
Then, the service leaf pair that was connected to the 
firewall could serve as the VTEP, decapsulating the VRF 
traffic and sending it to the firewall policy for processing.

The HPC security solution provides the following benefits:

•	 We can use an app that spans multiple subnets in multiple 
physical areas of the data center, and all these subnets can 
be in the same isolation bucket (VRF). The subnets can 
talk to each other without having to go through the firewall, 
but any other traffic in/out of that bucket must traverse 
the firewall policy.

•	 We are able to extend any enclave or secure network 
throughout the data center; there is no need to move 
enclosures.

•	 We have improved provisioning time; now it takes only 
two hours instead of eight days to secure the network.

•	 All security happens at the firewall with enhanced 
monitoring and logging.

•	 There is no impact on non-secure network traffic flow.

We have implemented this new security solution across 
all Design data centers, and it is pervasively used for 
segmentation and isolation.

Migration Strategy
To move our Office/Enterprise and Design data centers to the 
new SDN architecture, we built the new IP fabric in parallel in 
the data center. Any new systems were deployed directly to 
the new fabric while we began migrating existing racks a few 
at a time to the new fabric. For the HPC environment, there 
was no downtime for a compute rack move, while file server 
migration was done without downtime by working closely 
with the file server administrator team. In Enterprise data 
centers, we used quarterly scheduled downtime to migrate 
L3, firewalls, and load balancers to the new fabric (only one 
period of downtime per data center), and migrated one row at a 
time to the new fabric. We found that it takes six to eight hours 
of downtime for large data centers and three to four hours for 
medium data centers for the Enterprise migration. 

Figure 8 on this page and Figure 9 on the next page, 
respectively, show our migration strategy for the Enterprise 
and Design data centers. Because the data centers 
have a low tolerance for outage windows, we adopted a 
phased migration approach, where layers from the legacy 
environment are removed first, with the client connections 
still intact. Subsequent phases involve staging redundant 
connections to the newly built infrastructure and then 
simultaneously cutting the links to the legacy environment 
while bringing up the new links. 

We have migrated 90% of the data centers over the last 
five years (Figure 10 on the following page).

Design Center Migration Strategy
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Storage Pod

Spine Spine

 Border Router Border Router
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Figure 8. Interconnect leaf layer connecting legacy data center with new fabric.



White Paper | IT@Intel: Scaling Intel’s Data Centers with Software-Defined Networking and Automation	 11

Office and Enterprise Migration Strategy
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Figure 9. Border router connecting the old topology with the new topology.
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Figure 10. Over the last five years, we have migrated 90% 
of all data centers to the new SDN architecture.

Results
Our adoption of SDN and automation architecture has 
provided numerous benefits to Intel, as detailed in the 
following sections.

Overall SDN Benefits
•	 Network provisioning improvement. It used to take 

nearly eight hours to provision networks for entire racks of 
servers from TOR switches. Multiple manual components 
contributed to the long lead time, including initial 
switch standard software and baseline configuration, 
provisioning of L2 and L3 networks, configurations of L2 
and L3 redundancy, setup of DNS records, and, finally, 
giving the correct persona to a switch. With the new 
software-defined and automated architecture, all these 
components are built as part of baseline configurations 
and integration with IP address management, which has 
reduced the provisioning time to less than two hours.

•	 Improvement in reliability and stability. We have improved 
the reliability of the data center and reduced the number 
of performance-related incidents by 70%. Multiple factors 
contributed to these improvements, such as using multiple 

100 Gbps connectivity (which increased the bandwidth by 
2-8x) and standard deployment automation that eliminates 
human errors in configuration. As shown in Figure 11, we 
have not had a major network incident in over four years 
across Design data centers worldwide — amply illustrating 
the robustness of the solution.

•	 Efficiency. We saw 25% year-over-year growth in Intel’s 
Design data centers. Our network team was able to support 
this higher volume of work without increasing staff. This was 
only possible due to the direct value of SDN and automating 
Day 0 and Day 1 tasks. We have achieved greater than 20% 
efficiency improvements with the SDN architecture to date.

•	 Flexibility. An additional benefit of the open, standards-
based SDN and orchestration layer is the ability to 
add custom network layers to meet unique business 
requirements. In contrast, a closed-loop, supplier-centric 
SDN solution offers very limited ability to make these 
types of changes. Over the years, we have made multiple 
value-add changes to the automation to adjust to the 
architecture changes in the data center.
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Enterprise data centers has enabled us to nearly eliminate 
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Benefits Specific to Orchestration and Automation 2.0
As we began integrating our version 2.0 of the orchestration 
and automation framework through a pilot project and some 
small data center migrations, we observed some expected 
efficiency gains, as well as some unexpected benefits:

•	 Greenfield device provisioning: As expected, our new 
ZTP is paying dividends on each new installation. The 
process requires only a single step (minimal initial device 
data upload) compared to the previously required multiple 
steps (initial data upload, phase 1 ZTP, image delivery, 
baseline configuration generation, and configuration 
push). Our new process also alleviates limitations from the 
previous system by pre-loading the appropriate software 
image (determined by the values in our NSoT).

•	 Brownfield data import: The tool we developed to pull data 
in from existing devices has proven accurate and efficient. 
The engineer simply inputs a list of all devices for the 
environment they are migrating, and our script crawls each 
device, fetches the relevant data values, and then stores 
them appropriately based on the schema of our NSoT.

•	 Reconciliation to standard: While our previous system 
generated the majority of the configurations to standard, 
our engineers had the latitude to easily customize 
a specific device’s configuration, leading to many 
deviations. An unexpected side benefit to our method of 
migration is a forced reconciliation to standard, as the new 
configurations are rendered completely against the NSoT 
data. The trade-off is a more time-consuming final step 
in the migration to ensure the reconciliation to standard 
doesn’t have a negative impact. However, the upside is an 
environment that is significantly more compliant—and as 
our environment standardization increases, the ease and 
ability to automate it correspondingly increases.

Next Steps
Over the next three months, we plan to complete the migration 
of all our data center network environments to version 2.0 
of the orchestration and automation framework. Following 
this, we will shift our focus to enhancing the framework by 
integrating network validation tools (both pre- and post-
change), streaming telemetry, and expanding self-service 
functionality and IT Service Management integration. As 
our network provisioning becomes increasingly automated, 
we are already undertaking efforts to transform our network 
engineering team’s skill set and mindset to align more closely 
with DevOps methodologies. Our vision is to evolve into a 
team that possesses not only a deep understanding of the 
networking aspects of our environment but also the ability to 
automate and develop it—an amalgamation of skill sets that 
are increasingly rare in today’s job market.

Conclusion
We believe that our selection of open, standards-based 
technologies for constructing underlay and overlay networks, 
combined with an open-source orchestration layer, has been 
essential in granting us the flexibility to adapt to business 
needs and realize the value of a broader ecosystem. 

Our network architecture and strategy are deliberately 
designed and data-driven to help ensure the performance 
levels and network availability that our customers need 
to succeed. 

The leaf-spine underlay architecture utilizing open, 
standards-based protocols within an SDN environment 
allows us to accommodate the 25% annual growth in 
network capacity while achieving a 4x reduction in 
provisioning time. This new resilient solution significantly 
enhances the reliability and stability of our data center 
network. We can now integrate various security use cases 
onto a unified infrastructure and onboard new security 
applications with minimal additional effort. The foundation 
for these advancements was the comprehensive development 
of automation and standardization of the data center 
architectural elements, enabling them to be easily 
replicated in modular building blocks. 

Related Content
If you liked this paper, you may also be interested in these 
related stories: 

•	 IT@Intel: Validating and Evolving Intel IT’s 
Multicloud Strategy

•	 IT@Intel: Data Center Strategy Leading Intel’s 
Business Transformation

•	 IT@Intel: Building a Multi-Cloud-Ready 
Enterprise Network

•	 IT@Intel: Transforming Industrial Manufacturing 
with Software-Defined Networking

For more information on Intel IT best 
practices, visit intel.com/IT.

IT@Intel
We connect IT professionals with their IT peers 
inside Intel. Our IT department solves some of 
today’s most demanding and complex technology 
issues, and we want to share these lessons directly 
with our fellow IT professionals in an open peer-to-
peer forum.

Our goal is simple: improve efficiency throughout 
the organization and enhance the business value of 
IT investments. 

Follow us and join the conversation on X or LinkedIn. 
Visit us today at intel.com/IT if you would like to 
learn more. 

http://www.intel.com/IT
http://x.com/intelbusiness
https://www.linkedin.com/showcase/intel-business/
http://www.intel.com/it
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