Network Configuration Templating with Ansible – Part 3

Blog Detail

In the first and second parts of this series we discussed extracting variables from your device configurations, building your host and group data structures with those variables, and then using that data along with Jinja2 templates to generate configurations programmatically. In the third part of this series, we will dive deeper into the more advanced methods of manipulating the data output during generation by using two key features of Jinaj2, filters and macros.

Filters

When using Jinja2 to generate configurations you might find yourself at times wanting to convert a variable value to another format. This is useful in cases where you don’t necessarily want to document every possible variable for your configuration. One example of this would be using a CIDR notation for an IP address variable. By using CIDR notation, you’re able to document not only the host address but also determine the network address, broadcast address, and associated netmask. Extracting that information from the CIDR address variable is where Jinja2 filters come into play. By using the ipaddr filter that’s based on top of the netaddr Python library, you’re able to pass the CIDR address to a specific variable to get the desired piece of data.

In order to utilize a filter such as ansible.utils.ipaddr, you pipe (using the | character) a value to your desired filter. You can chain together as many filters as you like as shown below:

# router1.yml
network: "192.168.1.0/24"
# template.j2
ip route 0.0.0.0 0.0.0.0 {{ network | ansible.utils.ipaddr("1") | ansible.utils.ipv4("address") }}

By using the CIDR address notation defined by the network variable and passing it through the ipaddr and ipv4 filters, we are able to obtain the gateway address and render the default route as shown:

ip route 0.0.0.0 0.0.0.0 192.168.1.1

This works due to a Jinja2 filter simply being a Python function that accepts arguments and returns some value. With the first ansible.utils.ipaddr("1") step, it’s taking the value of the network variable and finding the first IP address in the network, 192.168.100.1/24. Then the ansible.utils.ipv4("address") filter takes that value and finds just the address, which strips the /24 and returns 192.168.100.1.

Now, you might be asking yourself what would be the use for something like this? Using templates like the above allows for you to make changes across your fleet while still taking into account variations in configurations. For example, you could write a playbook like below to set a new default gateway on devices:

# update_gateways.yaml
- name: Default Route Update Playbook
  hosts: all
  gather_facts: false

  tasks:
    - name: Update default gateway on inventory hosts
      cisco.ios.ios_config:
        backup: "yes"
        src: "./template.j2"
        save_when: "modified"
(base) {} ansible-playbook -i inventory update_gateways.yaml

PLAY [Default Route Update Playbook] ***********************************************************************************************************************

TASK [Update default gateway on inventory hosts] ***********************************************************************************************************************
changed: [router1]
changed: [router2]
changed: [router3]

PLAY RECAP ***********************************************************************************************************************
router1                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0
router2                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0
router3                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0

To obtain the currently available filters included with Ansible, you’ll need to install them from the ansible.utils collection. This can be done by issuing ansible-galaxy collection install ansible.utils at the command line. In addition, as filters are simply Python functions, you are able to write your own for utilizing within your templates. This is extremely helpful when you have some complex piece of data that you wish to manipulate before inserting into a configuration. Using the example from above, we can write a function to perform the same and simplify the template:

#custom_filters.py
import netaddr

class FilterModule(object):
    def filters(self):
        return {
            "get_gateway_address": self.get_gateway_address
        }

    def get_gateway_address(self, network: str):
        network = netaddr.IPNetwork(network)
        return str(network.ip + 1)

As custom filters are just simple Python functions, adding them into the Jinja environment for Ansible requires some specific code. As you can see in the example above, there is a FilterModule class that Ansible looks for when adding custom filters. In this class there must be a filters method that returns a dictionary where the key is the name you want to use for your filter and the value being the function itself. There isn’t a requirement for the called method to reside in the FilterModule class, but putting it there helps prevent potential namespace conflicts.

In order to test this filter within Ansible, you can place the Python file containing the filter definition inside a folder called filter_plugins alongside your playbooks, utilizing it as shown in the diagram below:

(base) {} tree
.
├── filter_plugins
│   ├── custom_filters.py
├── group_vars
├── inventory
├── update_gateways.yaml
├── template.j2

You would then simply update the template line to use the filter like so:

ip route 0.0.0.0 0.0.0.0 {{ network | get_gateway_address }}

Once you’re confident it’s working as intended, you can bundle it alongside others in a collection for easy installation in other environments. If you’re curious about the included filters in Ansible, the source for them is available in their GitHub repo. The Jinja2 framework also includes a number of filters that can be found in their reference documentation.

Macros

Macros are the equivalent of functions in Jinja2. They can be used to store a single word or phrase, or even do some processing and manipulation of your data using Jinja2 syntax as opposed to Python syntax. These are handy when you might not be comfortable with Python but still want to process your data in some manner. Continuing with the example from above, we could write a macro to note the combination of filters like below:

{% macro get_gateway_ip(network) -%}
{% network | ansible.utils.ipaddr("1") | ansible.utils.ipv4("address") -%}
{%- endmacro -%}

We would then need to update the template to call the macro by passing the variable value to the macro as an argument much like Python takes arguments:

ip route 0.0.0.0 0.0.0.0 {{ get_gateway_ip(network) }}

Notice how we pass in the network variable, which in the template file is equivalent to the CIDR notation 192.168.1.0/24. This value is what is then passed to the macro, and acted upon by the filters. The macro then returns the ip address as 192.168.1.1. The rendered result would be:

ip route 0.0.0.0 0.0.0.0 192.168.1.1

Another example would be to define the default interface configuration and expand that macro for your other port roles. Using the configuration information below, we can create a macro that covers the basics of an interface like so:

interfaces:
    - name: "GigabitEthernet0/1"
      duplex: "full"
      speed: 1000
      port_security: false
    - name: "GigabitEthernet0/2"
      duplex: "full"
      speed: 1000
      port_security: true
{% macro base_intf(intf) -%}
interface {{ intf["name"] }}
  duplex {{ intf["duplex"] }}
  speed {{ intf["speed"] }}
{%- endmacro -%}

We can then create another macro that extends the base_intf macro to add in the appropriate port security configuration like so:

{% macro secure_port(intf) -%}
{{ base_intf(intf) }}
  access-session port-control auto
  dot1x pae authenticator
{%- endmacro -%}

Now, when we want to generate the configuration we simply need to call the appropriate macro, like so:

# interfaces.j2
{% for intf in interfaces %}
{% if intf["port_security"] %}
{{ secure_port(intf) }}
{% else %}
{{ base_intf(intf) }}
{% endif %}
{% endfor %}

The above template would then render the following configuration using the interface information above:

interface GigabitEthernet0/1
  duplex full
  speed 1000
interface GigabitEthernet0/2
  duplex full
  speed 1000
  access-session port-control auto
  dot1x pae authenticator

As above, we can then utilize this template in a playbook to update the interfaces on our Devices like so:

# update_interfaces.yaml
- name: Update Interfaces Playbook
  hosts: all
  gather_facts: false

  tasks:
    - name: Update interfaces on inventory hosts
      cisco.ios.ios_config:
        backup: "yes"
        src: "./interfaces.j2"
        save_when: "modified"
(base) {} ansible-playbook -i inventory update_interfaces.yaml

PLAY [Update Interfaces Playbook] ***********************************************************************************************************************

TASK [Update interfaces on inventory hosts] ***********************************************************************************************************************
changed: [router1]
changed: [router3]
changed: [router2]

PLAY RECAP ***********************************************************************************************************************
router1                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0
router2                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0
router3                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0

As you can see, using macros enables you to minimize duplicated code, which simplifies things in addition to building compartmentalized logic into your templates. In addition, as with Python functions, you can place these macros in a central repository and reference them in your templates using Jinja imports. However, that’s outside the scope of this post, but more information can be found in the Jinja2 documentation.


Conclusion

In this post we went over the basics of Jinja2 filters and macros and how they can be utilized to aid you in manipulating your data being inserted into your templates. In Part 4 of this series, we’ll go into how Ansible handles variable inheritance and how that can enable more advanced templates.

-Justin



ntc img
ntc img

Contact Us to Learn More

Share details about yourself & someone from our team will reach out to you ASAP!

Network Configuration Templating with Ansible – Part 2

Blog Detail

In Part 1 of this series on configuration templating, we looked at how to take some basic configurations and extract values that can be made into variables based on different data points, such as location or device type. Now that you have a foundation of how to extract data from configurations in order to create a list of configuration variables, how do you use this information to generate configurations? The next step is looking at how to use these variables to programmatically generate the corresponding configuration files. In order to do this we use a templating language called Jinja2.

Jinja2

Jinja2 is a way to take template files (.j2 extension) based on the original text of a file, and do replacements of sections, lines, or even individual characters within the configuration based on a set of structured data (variables). In order to denote plain text from variable sections in the configuration, Jinja2 uses curly braces and percent signs to allow “codification” of sections of the text and double curly braces to denote variables to inject in the text.

Template Files

For example, if we look at a stripped-down version of the YAML variables from the first example in part 1 of this blog series (variables.yaml), and create a Jinja2 template file called template.j2 as follows:

# variables.yaml
ntp:
  servers:
    - ip: "1.1.1.1"
    - ip: "1.0.0.1"
    - ip: "8.8.8.8"
# template.j2
hostname {{ inventory_hostname }}
{% for server in ntp["servers"] %}
ntp server {{ server["ip"] }}
{% endfor %}

Running this template through the Jinja2 engine would yield the following text:

# result.cfg
hostname router1
ntp server 1.1.1.1
ntp server 1.0.0.1
ntp server 8.8.8.8

You may be wondering where router1 came from in the resulting configuration. inventory_hostname is a built-in Ansible variable that references the hostname of the device (from the Ansible inventory) that is currently being worked on. See Special Varialbes – Ansible for more information.

We can see the utilization of a for statement in {% for server in ntp["servers"] %} that will loop through all the server objects in the YAML file, fill in with the {{ server["ip"] }} variable, and generate a complete line for each of the server ip addresses in the YAML data. If you are familiar with Ansible and Python, the variable syntax will look similar when working with lists and dictionaries in Jinja2. Also, note that code sections have both an opening and closing set of braces and percent signs: {% for x in y %} and {% endfor %}. The text and variables inside these two statements is what will get acted upon by the Jinja2 engine. By carefully placing these, you can be very specific on which portions of the config get templated versus just being moved through the engine verbatim.

Placement and Spacing Are Important

If we change the template.j2 file (same YAML file) to look like the following example instead, there will be a completely different result. In some configurations, the config syntax puts all the server IPs on the same line. Note, Jinja2 is very particular on spacing and indentation. Spacing and indentation will be the same as it is laid out in the Jinja2 template file. (Notice the space after {{ server }} to get spaces between the IPs.)

# template.j2
ntp server {% for server in ntp["servers"] %}{{ server }} {% endfor %}
# result.cfg
ntp server 1.1.1.1 1.0.0.1 8.8.8.8

So, placement of the code blocks can be very flexible and allow for just about any combination of raw text and structured data to be combined.

Playbook

Now that we understand how to work with the structured data/variables, and how to build the Jinja2 template files, we can write an Ansible playbook to generate the configuration snippet. We assume Ansible is already installed on your machine for this.

For this demo, it’s assumed that your file structure is flat (no folders) with all files in the same folder, with the exception of the configs folder, which is where the generated configurations will be placed by Ansible. We will use the same template.j2 file that was used in the beginning of this post to generate NTP configurations for three routers.

File Structure

(base) {} ansible tree
.
├── configs
├── inventory
├── playbook.yaml
├── template.j2
└── variables.yaml
# inventory
router1
router2
router3
# playbook.yaml
- name: Template Generation Playbook
  hosts: all
  gather_facts: false
  vars_files:
    - ./variables.yaml

  tasks:
    - name: Generate template
      ansible.builtin.template:
        src: ./template.j2
        dest: ./configs/.cfg
      delegate_to: localhost

We’ll run the playbook with the following command ansible-playbook -i inventory playbook.yaml, and we should see three new files output in the current working directory. When not connecting to devices, it is important to use the delegate_to option, otherwise Ansible will try to SSH to the devices in your inventory and attempt to do the templating there. This normally doesn’t work for network devices, so we have the Ansible host generate the template files itself.

Playbook output:

(base) {} ansible ansible-playbook -i inventory playbook.yaml

PLAY [Template Generation Playbook] ***********************************************************************************************************************

TASK [Generate template] ***********************************************************************************************************************
changed: [router1 -> localhost]
changed: [router3 -> localhost]
changed: [router2 -> localhost]

PLAY RECAP ***********************************************************************************************************************
router1                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0
router2                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0
router3                    : ok=1    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0

We now see three new files in the configs folder:

(base) {} ansible tree
.
├── configs
│   ├── router1.cfg
│   ├── router2.cfg
│   └── router3.cfg
├── inventory
├── playbook.yaml
├── template.j2
└── variables.yaml

If we open up one of the .cfg files, we’ll see the contents are all the same, aside from the hostname, which is specific to the device. This is because we used the inventory_hostname variable in the Jinja2 template.

# router1.cfg
hostname router1
ntp server 1.1.1.1
ntp server 1.0.0.1
ntp server 8.8.8.8
# router2.cfg
hostname router2
ntp server 1.1.1.1
ntp server 1.0.0.1
ntp server 8.8.8.8
# router3.cfg
hostname router3
ntp server 1.1.1.1
ntp server 1.0.0.1
ntp server 8.8.8.8

It is possible to do even more complex variable replacements when variable inheritance/hierarchy is used, which will be discussed later in this series. For now, you should be mostly comfortable with generating basic templates and external variable files. This method can also be extended with Ansible tasks like get_facts or textFSM to gather “live” values from devices to further enrich templates.

Wrap-up

In Part 3 of this series, we will be covering macros and other Jinja2 functions, and how to use them in your templates.

In Part 4 of this series, we will cover advanced templating with variable inheritenace. This is how you can assign different values to variables based on a set of predefined criteria, such as location, device type, or device function.


Conclusion

There is also a couple pieces of software to run these templating tests outside of writing code. This way it’s possible to test even before a decision is made on how the templating will actually be run (using Python, Ansible, etc.). The first one is j2live.ttl225.com, written by our very own @progala! Also noteworthy; TD4A – GitHub or TD4A – Online

-Zach



ntc img
ntc img

Contact Us to Learn More

Share details about yourself & someone from our team will reach out to you ASAP!

Network Configuration Templating with Ansible – Part 1

Blog Detail

When discussing network automation with our customers, one of the main concerns that come up is the ability to audit their device configurations. This becomes especially important during the last quarter of the year, as many corporations are going through their yearly audit to obtain their required approvals for PCI or other compliance standards. Our solution for that is to use the Golden Configuration application for Nautobot, but it’s also entirely possible to use simple Ansible playbooks to perform the audit. This blog series will go over the essential pieces to understanding network configuration templating using Ansible, but the same process can easily be translated for use with Nautobot.

To start templating your configuration you must identify the feature that you wish to audit. Whether it be your DNS or NTP settings, it’s usually easier to start with small parts of the configuration before moving on to the more complicated parts, such as routing or interfaces. With a feature selected, you can start reviewing the device configurations to create your templates. For this article, we’ll use NTP configuration from an IOS router as the chosen feature:

ntp server 1.1.1.1 prefer
ntp server 1.0.0.1
ntp server 8.8.8.8
clock timezone GMT 0
clock summer-time CET recurring

After you’ve identified the portions of the configuration that you wish to template for the feature, the next step is to review the configuration snippet(s) and identify the variables relevant to the configuration feature. Specifically, you want to extract only the non-platform-specific variables, as the platform-specific syntax should be part of your template with the variables abstracted away for use across platforms. Using the example above, we can extract the following bits of information:

  • three NTP server hosts
    • 1.1.1.1
    • 1.0.0.1
    • 8.8.8.8
  • preferred NTP server
    • 1.1.1.1 is preferred
  • time zone and offset
    • GMT
    • 0
  • daylight saving timezone
    • CET

With these variables identified, the next step is to define a schema for these variables to be stored in. For Ansible this is typically in a YAML file as host or group vars. As YAML is limited in the types of data it can document, lists and key/value pairs typically, it’s best to design the structure around that limitation. With the example above, we’d want to have a list of the NTP servers as one item with a key noting which is preferred, the timezone with offset, and the daylight saving timezone. One potential schema would be like the below:

---
# file: group_vars/all.yml
ntp:
  servers:
    - ip: "1.1.1.1"
      prefer: true
    - ip: "1.0.0.1"
      prefer: false
    - ip: "8.8.8.8"
      prefer: false
  timezone:
    zone: "GMT"
    offset: 0
    dst: "CET"

Defining this structure is important as it will need to be flexible enough to cover data for all platforms while also being simple enough that your templates don’t become complicated. You’ll want to ensure that all other variables that are for this feature are of the same structure to ensure compatibility with the Jinja2 templates you’ll be creating in future parts of this series. It’s possible to utilize something like the Schema Enforcer framework to enable enforcement of your schemas against newly added data. This allows you a level of trust that the data provided to the templates are of the right format.

The next step, once the variables have been defined and you’ve determined a structure for them, is to understand where they belong within your network configuration hierarchy. This means that you need to understand in which circumstances these values are considered valid. Are they globally applicable to all devices or only to a particular region? This will define whether you place the variables in a device-specific variable or a group-specific one, and if in a group which group. This is especially important, as where you place the variables will define which devices inherit them and will use them when it comes time to generate configurations. For this article, we’ll assume that these are global variables and would be placed in the all group vars file. With this in mind, you’ll want to start building your inventory with those variable files. Following the Ansible Best Practices, it’s recommended to have a directory layout like so:

inventory.yml
group_vars/
    all.yml
    routers.yml
    switches.yml
host_vars/
    jcy-rtr-01.infra.ntc.com.yml
    jcy-rtr-02.infra.ntc.com.yml

This should allow for clear and quick understanding of where the variables are in relation to your network fleet. This will become increasingly important as you build out more templates and adding variables. With your inventory structure built out, you can validate that the variables are assigned to your devices as expected with the ansible-invenotry -i inventory.yml --list which will return the variables assigned to each device like so:

{
    "_meta": {
        "hostvars": {
            "jcy-rtr-01.infra.ntc.com": {
                "ntp": {
                    "servers": [
                        {
                            "ip": "1.1.1.1",
                            "prefer": true
                        },
                        {
                            "ip": "1.0.0.1",
                            "prefer": false
                        },
                        {
                            "ip": "8.8.8.8",
                            "prefer": false
                        }
                    ],
                    "timezone": {
                        "dst": "CET",
                        "offset": 0,
                        "zone": "GMT"
                    }
                }
            },
            "jcy-rtr-02.infra.ntc.com": {
                "ntp": {
                    "servers": [
                        {
                            "ip": "1.1.1.1",
                            "prefer": true
                        },
                        {
                            "ip": "1.0.0.1",
                            "prefer": false
                        },
                        {
                            "ip": "8.8.8.8",
                            "prefer": false
                        }
                    ],
                    "timezone": {
                        "dst": "CET",
                        "offset": 0,
                        "zone": "GMT"
                    }
                }
            }
        }
    },
    "all": {
        "children": [
            "routers",
            "ungrouped"
        ]
    },
    "routers": {
        "hosts": [
            "jcy-rtr-01.infra.ntc.com",
            "jcy-rtr-02.infra.ntc.com"
        ]
    }
}

Conclusion

This allows you to validate and ensure that the variables you’ve created are being assigned where you expect. In the next part of this series we’ll dive into how to craft a configuration template using the Jinja2 templating engine.

-Justin



ntc img
ntc img

Contact Us to Learn More

Share details about yourself & someone from our team will reach out to you ASAP!